



Approval body for construction products and types of construction

#### **Bautechnisches Prüfamt**

An institution established by the Federal and Laender Governments



# European Technical Assessment

# ETA-15/0167 of 7 May 2015

English translation prepared by DIBt - Original version in German language

#### **General Part**

Technical Assessment Body issuing the European Technical Assessment:

Trade name of the construction product

Product family to which the construction product belongs

Manufacturer

Manufacturing plant

This European Technical Assessment contains

This European Technical Assessment is issued in accordance with Regulation (EU) No 305/2011, on the basis of Deutsches Institut für Bautechnik

Ter Laare Wedge Anchor DX FAST ETA 1 and DX-I FAST ETA 1

Torque controlled expansion anchor for use in concrete

TER LAARE VERANKERINGSTECHNIEKEN BV. ZWARTE ZEE 20 3140 MAASSLUIS NIEDERLANDE

Ter Laare Verankeringstechnieken BV Herstellwerk 3

32 pages including 3 annexes which form an integral part of this assessment

Guideline for European technical approval of "Metal anchors for use in concrete", ETAG 001 Part 2: "Torque controlled expansion anchors", April 2013, used as European Assessment Document (EAD) according to Article 66 Paragraph 3 of Regulation (EU) No 305/2011.



# **European Technical Assessment** ETA-15/0167

Page 2 of 32 | 7 May 2015

English translation prepared by DIBt

The European Technical Assessment is issued by the Technical Assessment Body in its official language. Translations of this European Technical Assessment in other languages shall fully correspond to the original issued document and shall be identified as such.

Communication of this European Technical Assessment, including transmission by electronic means, shall be in full. However, partial reproduction may only be made with the written consent of the issuing Technical Assessment Body. Any partial reproduction has to be identified as such.

This European Technical Assessment may be withdrawn by the issuing Technical Assessment Body, in particular pursuant to information by the Commission according to Article 25 Paragraph 3 of Regulation (EU) No 305/2011.



Page 3 of 32 | 7 May 2015

European Technical Assessment ETA-15/0167 English translation prepared by DIBt

#### Specific Part

#### 1 Technical description of the product

The Ter Laare Wedge anchor DX FAST ETA 1 and DX-I FAST ETA 1 is an anchor made of galvanised steel or made of stainless steel or high corrosion resistant steel which is placed into a drilled hole and anchored by torque-controlled expansion. The following anchor types are covered:

- Anchor type DX FAST ETA 1 with external thread, washer and hexagon nut, sizes M8 to M27,
- Anchor type DX-I FAST ETA 1 + DIN 933 with internal thread, hexagon head nut and washer DIN 933, sizes M6 to M12,
- Anchor type DX-I FAST ETA 1 + DIN 7991 with internal thread, countersunk head screw and countersunk washer DIN 7991, sizes M6 to M12,
- Anchor type DX-I FAST ETA 1 + DIN 976 with internal thread, hexagon nut and washer DIN 976, sizes M6 to M12.

The product description is given in Annex A.

# 2 Specification of the intended use in accordance with the applicable European Assessment Document

The performances given in Section 3 are only valid if the anchor is used in compliance with the specifications and conditions given in Annex B.

The verifications and assessment methods on which this European Technical Assessment is based lead to the assumption of a working life of the anchor of at least 50 years. The indications given on the working life cannot be interpreted as a guarantee given by the producer, but are to be regarded only as a means for choosing the right products in relation to the expected economically reasonable working life of the works.

#### 3 Performance of the product and references to the methods used for its assessment

#### 3.1 Mechanical resistance and stability (BWR 1)

| Essential characteristic                                                                 | Performance            |
|------------------------------------------------------------------------------------------|------------------------|
| Characteristic resistance for static and quasi static action for DX FAST ETA 1           | See Annex C 1 to C 5   |
| Characteristic resistance for seismic performance categories C1 and C2 for DX FAST ETA 1 | See Annex C 6          |
| Characteristic resistance for static and quasi static action for DX-I FAST ETA 1         | See Annex C 10 to C 12 |
| Displacements under tension loads for<br>DX FAST ETA 1                                   | See Annex C 8          |
| Displacements under shear loads for<br>DX FAST ETA 1                                     | See Annex C 9          |
| Displacements under tension and shear loads for DX-I FAST ETA 1                          | See Annex C 14         |



Page 4 of 32 | 7 May 2015

# European Technical Assessment

#### ETA-15/0167

English translation prepared by DIBt

### 3.2 Safety in case of fire (BWR 2)

| Essential characteristic               | Performance                                     |
|----------------------------------------|-------------------------------------------------|
| Reaction to fire                       | Anchorages satisfy requirements for<br>Class A1 |
| Resistance to fire for DX FAST ETA 1   | See Annex C 7                                   |
| Resistance to fire for DX-I FAST ETA 1 | See Annex C 13                                  |

**3.3 Hygiene, health and the environment (BWR 3)** Not applicable.

### 3.4 Safety in use (BWR 4)

The essential characteristics regarding Safety in use are included under the Basic Works Requirement Mechanical resistance and stability.

#### 3.5 Protection against noise (BWR 5)

Not applicable.

3.6 Energy economy and heat retention (BWR 6) Not applicable.

### 3.7 Sustainable use of natural resources (BWR 7)

The sustainable use of natural resources was not investigated.

#### 3.8 General aspects

The verification of durability is part of testing the essential characteristics. Durability is only ensured if the specifications of intended use according to Annex B are taken into account.

# 4 Assessment and verification of constancy of performance (AVCP) system applied, with reference to its legal base

According to Decision of the Commission of 24 June 1996 (96/582/EC) (OJ L 254 of 08.10.96 p. 62-65), the system of assessment and verification of constancy of performance (see Annex V and Article 65 Paragraph 2 to Regulation (EU) No 305/2011) given in the following table applies.

| Product                                             | Intended use                                                                                                              | Level or class | System |
|-----------------------------------------------------|---------------------------------------------------------------------------------------------------------------------------|----------------|--------|
| Metal anchors for use in concrete (heavy-duty type) | For fixing and/or supporting<br>concrete structural elements or<br>heavy units such as cladding and<br>suspended ceilings | _              | 1      |



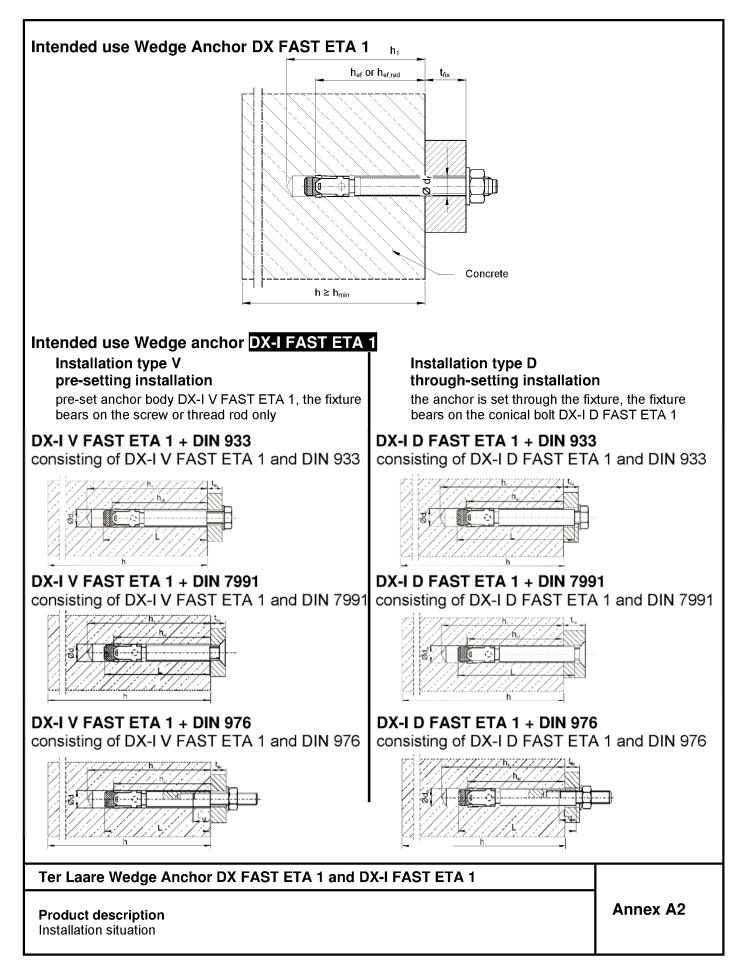
# **European Technical Assessment** ETA-15/0167

Page 5 of 32 | 7 May 2015

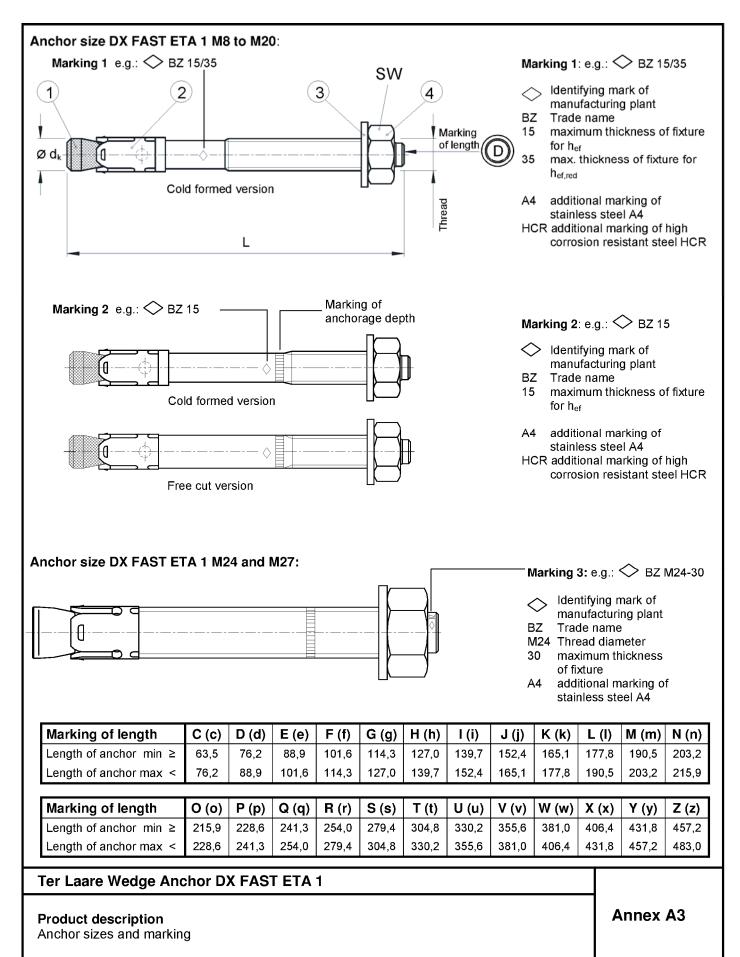
English translation prepared by DIBt

#### 5 Technical details necessary for the implementation of the AVCP system, as provided for in the applicable European Assessment Document

Technical details necessary for the implementation of the AVCP system are laid down in the control plan deposited at Deutsches Institut für Bautechnik.


Issued in Berlin on 7 May 2015 by Deutsches Institut für Bautechnik

Uwe Bender Head of Department beglaubigt: Baderschneider




| Wedge anchor DX FA                         | ST ETA 1                                 |                    |             |                                 |
|--------------------------------------------|------------------------------------------|--------------------|-------------|---------------------------------|
| Conical bolt                               | Expansion sleeve                         | e Washer           | Hexagon nut |                                 |
|                                            |                                          |                    |             |                                 |
|                                            |                                          |                    | M8 t        | o M20                           |
|                                            |                                          |                    |             |                                 |
|                                            |                                          |                    | M8 t        | o M20                           |
|                                            |                                          |                    |             | 4 to M27<br>7 zinc plated only) |
| Wedge anchor DX-I F                        | AST ETA 1 M6 to M1                       | 12                 |             |                                 |
| Anchor system                              |                                          |                    |             |                                 |
| DX-I V FAST<br>ETA 1 + DIN<br>933          |                                          |                    |             | Hexagon<br>head screw           |
| DX-I V FAST<br>ETA 1 + DIN<br>7991         | l bolt                                   | Countersur         | ık (        | Countersunk<br>head screw       |
| Expans<br>DX-I V FAST                      | l<br>sion sleeve                         | Washer Hexago      | on nut      | Commercial standard rod         |
| ETA 1 + DIN<br>976                         |                                          |                    |             |                                 |
| Anchor version                             | Product descriptio                       | n Intended         | use         | Performance                     |
| DX FAST ETA 1                              | Annex A1 – Annex A                       |                    |             | ex C1 – Annex C9                |
| DX-I FAST ETA 1                            | Annex A1 – Annex A<br>Annex A5 – Annex A |                    | 1 Anno      | x C10 – Annex C14               |
|                                            |                                          |                    |             |                                 |
| Ter Laare Wedge Ancl                       | nor DX FAST ETA 1 ar                     | nd DX-I FAST ETA 1 | 1           | ]                               |
| <b>Product description</b><br>Anchor types |                                          |                    |             | Annex A1                        |







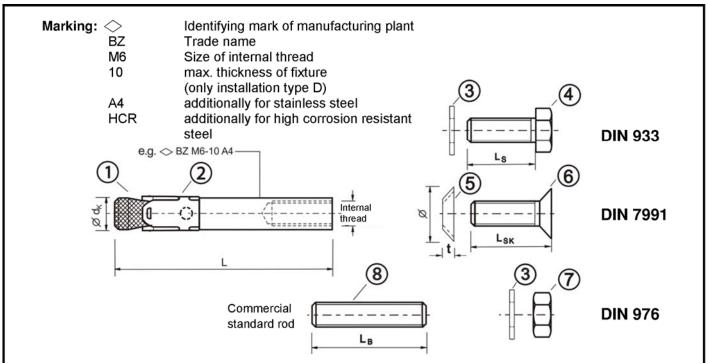




|   | Anchor  | size                 |                                | M8                    | M10                   | M12                   | M16                  | M20                  | M24                  | M27                 |
|---|---------|----------------------|--------------------------------|-----------------------|-----------------------|-----------------------|----------------------|----------------------|----------------------|---------------------|
| 1 | Conical | bolt                 | Thread                         | M8                    | M10                   | M12                   | M16                  | M20                  | M24                  | M27                 |
|   |         |                      | $\varnothing$ d <sub>k</sub> = | 7,9                   | 9,8                   | 12,0                  | 15,7                 | 19,7                 | 24                   | 28                  |
|   | Length  | Steel, zinc plated   | L                              | 65 + t <sub>fix</sub> | 80 + t <sub>fix</sub> | 96,5+t <sub>fix</sub> | 118+t <sub>fix</sub> | 137+t <sub>fix</sub> | 161+t <sub>fix</sub> | 178+t <sub>fi</sub> |
|   | of      | A4, HCR              | L                              | 65 + t <sub>fix</sub> | 80 + t <sub>fix</sub> | 96,5+t <sub>fix</sub> | 118+t <sub>fix</sub> | 137+t <sub>fix</sub> | 168+t <sub>fix</sub> | $\sim$              |
|   | anchor  | red. anchorage depth | L <sub>hef,red</sub>           | 54 + t <sub>fix</sub> | 60 + t <sub>fix</sub> | 76,5+t <sub>fix</sub> | 98+t <sub>fix</sub>  |                      |                      | $\langle$           |
| 2 | Expansi | on sleeve            |                                |                       |                       | S                     | ee Table A           | .2                   |                      |                     |
| 3 | Washer  |                      |                                |                       |                       | S                     | ee Table A           | 2                    |                      |                     |
| 4 | Hexagor | ו nut                | SW                             | 13                    | 17                    | 19                    | 24                   | 30                   | 36                   | 41                  |

# Table A2: Materials DX FAST ETA 1

| Part             | Steel,<br>zinc plated<br>M8 to M20                                      | Steel,<br>zinc plated<br>M24 and M27                                                                                                                                                                                                                   | Stainless steel A4                                                                                                                                                                                                                                                                                                    | High corrosion<br>resistant steel<br>(HCR)                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                       |
|------------------|-------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Conical bolt     | Cold formed or<br>machined steel,<br>Cone plastic coated<br>(M8 to M20) | Threaded bolt and<br>threaded cone,<br>steel                                                                                                                                                                                                           | Stainless steel<br>1.4401, 1.4404,<br>1.4571 or 1.4578,<br>EN 10088:2005,<br>Cone plastic coated                                                                                                                                                                                                                      | High corrosion<br>resistant steel<br>1.4529 or 1.4565,<br>EN 10088:2005,<br>Cone plastic coated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                  |
| Expansion sleeve | Steel acc. to EN<br>10088:2005,<br>material No. 1.4301<br>or 1.4401     | Steel acc. to<br>EN 10139-12:1997                                                                                                                                                                                                                      | Stainless steel<br>1.4401 or 1.4571,<br>EN 10088:2005                                                                                                                                                                                                                                                                 | Stainless steel<br>1.4401 or 1.4571,<br>EN 10088:2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                            |
| Washer           | Steel, galvanised                                                       |                                                                                                                                                                                                                                                        | Stainless steel<br>1.4401 or 1.4571,<br>EN 10088:2005                                                                                                                                                                                                                                                                 | High corrosion<br>resistant steel<br>1.4529 or 1.4565,<br>EN 10088:2005                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                          |
| Hexagon nut      | Steel, galvanised,<br>coated                                            |                                                                                                                                                                                                                                                        | stainless steel<br>1.4401 or 1.4571,<br>EN 10088:2005,<br>coated                                                                                                                                                                                                                                                      | high corrosion<br>resistant steel<br>1.4529 or 1.4565,<br>EN 10088:2005,<br>coated                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                                               |
|                  | Conical bolt<br>Expansion sleeve<br>Washer                              | Partzinc plated<br>M8 to M20Conical boltCold formed or<br>machined steel,<br>Cone plastic coated<br>(M8 to M20)Expansion sleeveSteel acc. to EN<br>10088:2005,<br>material No. 1.4301<br>or 1.4401WasherSteel, galvanisedHexagon nutSteel, galvanised, | Partzinc plated<br>M8 to M20zinc plated<br>M24 and M27Cold formed or<br>machined steel,<br>Cone plastic coated<br>(M8 to M20)Threaded bolt and<br>threaded cone,<br>steelExpansion sleeveSteel acc. to EN<br>10088:2005,<br>material No. 1.4301<br>or 1.4401Steel acc. to<br>EN 10139-12:1997WasherSteel, galvanised, | Partzinc plated<br>M8 to M20zinc plated<br>M24 and M27Stainless steel A4Conical boltCold formed or<br>machined steel,<br>Cone plastic coated<br>(M8 to M20)Threaded bolt and<br>threaded cone,<br>steelStainless steel<br>1.4401, 1.4404,<br>1.4571 or 1.4578,<br>EN 10088:2005,<br>Cone plastic coated<br>(M8 to M20)Steel acc. to EN<br>10088:2005,<br>Cone plastic coatedSteel acc. to<br>EN 10088:2005,<br>Cone plastic coatedExpansion sleeveSteel acc. to EN<br>10088:2005,<br>material No. 1.4301<br>or 1.4401Steel acc. to<br>EN 10139-12:1997Stainless steel<br>1.4401 or 1.4571,<br>EN 10088:2005WasherSteel, galvanisedSteel, galvanised,<br>coatedStainless steel<br>1.4401 or 1.4571,<br>EN 10088:2005Hexagon nutSteel, galvanised,<br>coatedStainless steel<br>1.4401 or 1.4571,<br>EN 10088:2005, |


# Ter Laare Wedge Anchor DX FAST ETA 1

**Product description** Dimensions and materials Annex A4

# Page 10 of European Technical Assessment ETA-15/0167 of 7 May 2015

English translation prepared by DIBt





# Table A3: Anchor dimensions DX-I FAST ETA 1

| No.              | Anchor size                                         |                                   | M6                            | M8                                                                      | M10                           | M12                           |  |
|------------------|-----------------------------------------------------|-----------------------------------|-------------------------------|-------------------------------------------------------------------------|-------------------------------|-------------------------------|--|
|                  | Conical bolt with<br>Internal thread                | $\oslash \mathbf{d}_{\mathbf{k}}$ | 7,9                           | 9,8                                                                     | 11,8                          | 15,7                          |  |
| 1                | Installation type V                                 | L                                 | 50                            | 62                                                                      | 70                            | 86                            |  |
|                  | Installation type D                                 | L                                 | 50 + t <sub>fix</sub>         | 62 + t <sub>fix</sub>                                                   | 70 + t <sub>fix</sub>         | 86 + t <sub>fix</sub>         |  |
| 2                | Expansion sleeve                                    |                                   |                               | see ta                                                                  | ble A4                        |                               |  |
| 3                | Washer                                              |                                   | see table A4                  |                                                                         |                               |                               |  |
|                  | Hexagon head screw <sup>w</sup>                     | dth across<br>flats               | 10                            | 13                                                                      | 17                            | 19                            |  |
| 4                | Installation type V                                 | Ls                                | t <sub>fix</sub> + (13 to 21) | t <sub>fix</sub> + (17 to 23)                                           | t <sub>fix</sub> + (21 to 25) | t <sub>fix</sub> + (24 to 29) |  |
|                  | Installation type D                                 | Ls                                | 14 to 20                      | 18 to 22                                                                | 20 to 22                      | 25 to 28                      |  |
| 5                | Countersunk Ø co                                    | untersink                         | 17,3                          | 21,5                                                                    | 25,9                          | 30,9                          |  |
| 5                | washer                                              | t                                 | 3,9                           | 5,0                                                                     | 5,7                           | 6,7                           |  |
| 6                | Countersunk<br>head screw                           | bit size                          | Torx<br>T30                   | Torx<br>T45 (Steel, zinc<br>plated)<br>T40 (Stainless<br>steel A4, HCR) | Hexagon socket<br>6 mm        | Hexagon socket<br>8 mm        |  |
|                  | Installation type V                                 | L <sub>sk</sub>                   | t <sub>fix</sub> + (11 to 19) | t <sub>fix</sub> + (15 to 21)                                           | t <sub>fix</sub> + (19 to 23) | t <sub>fix</sub> + (21 to 27) |  |
|                  | Installation type D                                 | L <sub>sk</sub>                   | 16 to 20                      | 20 to 25                                                                | 25                            | 30                            |  |
| 7                | Hexagon nut width a                                 | cross flats                       | 10                            | 13                                                                      | 17                            | 19                            |  |
| 8                | Commercial type V                                   | L <sub>B</sub> ≥                  | t <sub>fix</sub> + 21         | t <sub>fix</sub> + 28                                                   | t <sub>fix</sub> + 34         | t <sub>fix</sub> + 41         |  |
| 0                | standard rod <sup>1)</sup> type D                   | $L_B \geq$                        | 21                            | 28                                                                      | 34                            | 41                            |  |
| <sup>1)</sup> ac | c. to specifications (Table A4)                     |                                   |                               |                                                                         | C                             | imensions in mm               |  |
| Ter La           | aare Wedge Anchor DX                                | -I FAST E                         | ETA 1                         |                                                                         |                               |                               |  |
|                  | <b>ct description</b><br>r parts, marking and dimen | sions                             |                               |                                                                         |                               | Annex A5                      |  |



| No. | Part                                                    | Steel, zinc plated<br>≥ 5 μm acc. to<br>EN ISO 4042:1999            | Stainless steel A4                                                                              | High corrosion resistant steel HCR                                                                                |
|-----|---------------------------------------------------------|---------------------------------------------------------------------|-------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------|
| 1   | Conical bolt<br>DX-I FAST ETA 1<br>with internal thread | Machined steel,<br>Cone plastic coated                              | Stainless steel, 1.4401,<br>1.4404, 1.4571, 1.4362,<br>EN 10088:2005,<br>Cone plastic coated    | High corrosion resistant<br>steel, 1.4529, 1.4565,<br>EN 10088:2005,<br>Cone plastic coated                       |
| 2   | Expansion sleeve<br>DX-I FAST ETA 1                     | Stainless steel,<br>1.4301, 1.4401,<br>EN 10088:2005                | Stainless steel,<br>1.4401, 1.4571,<br>EN 10088:2005                                            | Stainless steel,<br>1.4401, 1.4571,<br>EN 10088:2005                                                              |
| 3   | Washer DIN 125A                                         | Steel, galvanised                                                   | Stainless steel,<br>1.4401, 1.4571,<br>EN 10088:2005                                            | High corrosion resistan<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2005                                             |
| 4   | Hexagon head screw<br>DIN 933                           | Steel, galvanised, coated                                           | Stainless steel,<br>1.4401, 1.4571,<br>EN 10088:2005,<br>coated                                 | High corrosion resistan<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2005,<br>coated                                  |
| 5   | Countersunk washer<br>DIN 7991                          | Steel, galvanised                                                   | Stainless steel,<br>1.4401, 1.4404, 1.4571,<br>EN 10088:2005,<br>zinc plated, coated            | High corrosion resistan<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2005,<br>zinc plated, coated                     |
| 6   | Countersunk head screw<br>DIN 7991                      | Steel, galvanised coated                                            | Stainless steel,<br>1.4401, 1.4571,<br>EN 10088:2005,<br>coated                                 | High corrosion resistan<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2005,<br>coated                                  |
| 7   | Hexagon nut<br>DIN 934                                  | Steel, galvanised coated                                            | Stainless steel,<br>1.4401, 1.4571,<br>EN 10088: 2005,<br>coated                                | High corrosion resistan<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2005,<br>coated                                  |
| 8   | Commercial standard rod                                 | Property class 8.8,<br>EN ISO 898-1:2013-05<br>$A_5 > 8 \%$ ductile | Stainless steel,<br>1.4401, 1.4571,<br>EN 10088:2005,<br>property class 70,<br>EN ISO 3506:2009 | High corrosion resistant<br>steel,<br>1.4529, 1.4565,<br>EN 10088:2005,<br>property class 70,<br>EN ISO 3506:2009 |

Ter Laare Wedge Anchor DX-I FAST ETA 1

Product description Materials Annex A6

| Specifications of intende                       | ed use                      |    |                       |     |     |     |     |     |
|-------------------------------------------------|-----------------------------|----|-----------------------|-----|-----|-----|-----|-----|
| Wedge Anchor DX FAST ETA 1                      |                             | M8 | M10                   | M12 | M16 | M20 | M24 | M27 |
| Static or quasi-static action                   |                             |    |                       |     | ✓   |     |     |     |
| Seismic action (Categorie C1 + C                | <b>(2)</b> <sup>1) 2)</sup> |    | <ul> <li>✓</li> </ul> | ✓   | ✓   | ✓   |     |     |
| Reduced anchorage depth <sup>2)</sup>           |                             | √  | ✓                     | ✓   | ✓   |     |     |     |
| Fire exposure <sup>1)</sup>                     |                             |    |                       |     | . √ |     |     | 2   |
| Cracked and non-cracked                         |                             |    |                       |     | √   |     |     |     |
| Wedge Anchor<br>DX-I FAST ETA 1                 | M6                          | M8 | M10                   | M12 |     |     |     |     |
| Static or quasi-static action                   |                             |    | √                     |     |     |     |     |     |
| Seismic action                                  |                             |    |                       |     | 1   |     |     |     |
| Fire exposure                                   |                             |    | ✓                     |     | 1   |     |     |     |
| Cracked and non-cracked                         |                             |    | ✓                     |     | 1   |     |     |     |
| <sup>1)</sup> only for standard anchorage depth | •                           |    |                       |     | 4   |     |     |     |

<sup>2)</sup> only cold formed anchors acc. to Annex A3

#### **Base materials:**

- Reinforced or unreinforced normal weight concrete according to EN 206-1: 2000
- Strength classes C20/25 to C50/60 according to EN 206-1: 2000

#### Use conditions (Environmental conditions):

- Structures subject to dry internal conditions (zinc plated steel, stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure (including industrial and marine environment) and to
  permanently damp internal condition, if no particular aggressive conditions exist
  (stainless steel or high corrosion resistant steel).
- Structures subject to external atmospheric exposure and to permanently damp internal condition, if other particular aggressive conditions (high corrosion resistant steel)

Note: Particular aggressive conditions are e.g. permanent, alternating immersion in seawater or the splash zone of seawater, chloride atmosphere of indoor pools or atmosphere with extreme chemical pollution (e.g. in desulphurization plants or road tunnels where de-icing materials are used.)

#### Design:

- Anchorages are designed under the responsibility of an engineer experienced in anchorages and concrete work.
- Verifiable calculation notes and drawings are prepared taking account of the loads to be anchored. The position of the anchor is indicated on the design drawings (e.g. position of the anchor relative to reinforcement or to supports, etc.).
- Anchorages under static or quasi-static actions are designed in accordance with:
  - ETAG 001, Annex C, design method A, Edition August 2010 or
    - CEN/TS 1992-4: 2009, design method A
- Anchorages under seismic actions (cracked concrete) are designed in accordance with:
  - EOTA Technical Report TR 045, Edition February 2013
  - Anchorages shall be positioned outside of critical regions (e.g. plastic hinges) of the concrete structure
  - Fastenings in stand-off installation or with a grout layer are not allowed
- Anchorages under fire exposure are designed in accordance with:
  - EOTA Technical Report TR 020, Edition May 2004
  - CEN/TS 1992-4: 2009, Annex D (It must be ensured that local spalling of the concrete cover does not occur)

#### Ter Laare Wedge Anchor DX FAST ETA 1 and DX-I FAST ETA 1

Intended use Specifications



| Anchor size                    | •                      |                              |      | M8   | M10   | M12  | M16  | M20   | M24   | M27   |
|--------------------------------|------------------------|------------------------------|------|------|-------|------|------|-------|-------|-------|
| Nominal drill                  | hole diameter          | do                           | [mm] | 8    | 10    | 12   | 16   | 20    | 24    | 28    |
| Cutting diam                   | eter of drill bit      | $d_{cut} \leq$               | [mm] | 8,45 | 10,45 | 12,5 | 16,5 | 20,55 | 24,55 | 28,55 |
| Installation                   | Steel, zinc<br>_plated | T <sub>inst</sub>            | [Nm] | 20   | 25    | 45   | 90   | 160   | 200   | 300   |
| torque                         | A4, HCR                | T <sub>inst</sub>            | [Nm] | 20   | 35    | 50   | 110  | 200   | 290   |       |
| Diameter of<br>hole in the fix |                        | $d_{\rm f} \leq$             | [mm] | 9    | 12    | 14   | 18   | 22    | 26    | 30    |
| Standard an                    | chorage depth          |                              |      |      |       |      |      |       |       |       |
| Depth of                       | Steel, zinc<br>plated  | $h_1 \geq$                   | [mm] | 60   | 75    | 90   | 110  | 125   | 145   | 160   |
| drill hole                     | A4, HCR                | $h_1 \geq$                   | [mm] | 60   | 75    | 90   | 110  | 125   | 155   |       |
| Effective<br>anchorage         | Steel, zinc<br>_plated | h <sub>ef</sub>              | [mm] | 46   | 60    | 70   | 85   | 100   | 115   | 125   |
| depth                          | A4, HCR                | h <sub>ef</sub>              | [mm] | 46   | 60    | 70   | 85   | 100   | 125   |       |
| Reduced an                     | chorage depth          |                              |      |      |       |      |      |       |       |       |
| Depth of drill                 | hole                   | $h_{1,\text{red}} \geq$      | [mm] | 49   | 55    | 70   | 90   |       |       | /     |
| Reduced effe                   |                        | $\mathbf{h}_{\text{ef,red}}$ | [mm] | 35   | 40    | 50   | 65   |       |       |       |

# Table B2: Min. spacings and edge distances, reduced anchorage depth, DX FAST ETA 1

| Anchor size                             |                    |      | M8  | M10 | M12 | M16 |
|-----------------------------------------|--------------------|------|-----|-----|-----|-----|
| Minimum thickness of<br>concrete member | h <sub>min,3</sub> | [mm] | 80  | 80  | 100 | 140 |
| Cracked concrete                        |                    |      |     |     |     |     |
| Minimum spacing                         | S <sub>min</sub>   | [mm] | 50  | 50  | 50  | 65  |
| winning spacing                         | for c $\geq$       | [mm] | 60  | 100 | 160 | 170 |
| Minimum edge distance                   | C <sub>min</sub>   | [mm] | 40  | 65  | 65  | 100 |
| Willing and a stance                    | for s $\geq$       | [mm] | 185 | 180 | 250 | 250 |
| Non-cracked concrete                    |                    |      |     |     |     |     |
| Minimum spacing                         | S <sub>min</sub>   | [mm] | 50  | 50  | 50  | 65  |
| Minimum spacing                         | for $c \ge$        | [mm] | 60  | 100 | 160 | 170 |
| Minimum edge distance                   | C <sub>min</sub>   | [mm] | 40  | 65  | 100 | 170 |
| winning euge distance                   | for s $\geq$       | [mm] | 185 | 180 | 185 | 65  |

# Ter Laare Wedge Anchor DX FAST ETA 1

#### Intended use Installation parameters,

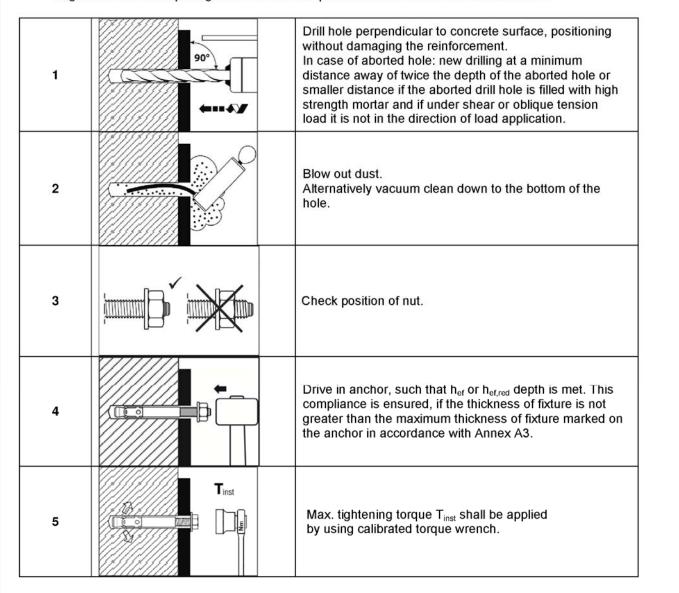
Minimum spacings and edge distances for reduced anchorage depth



| Anchor size                     |                     |      | M8  | M10 | M12   | M16      | M20         | M24    | M27           |
|---------------------------------|---------------------|------|-----|-----|-------|----------|-------------|--------|---------------|
| Standard thickness of concrete  | member              |      |     |     |       |          |             |        | •             |
| Steel zinc plated               |                     |      |     |     |       |          |             |        |               |
| Standard thickness of member    | h <sub>min,1</sub>  | [mm] | 100 | 120 | 140   | 170      | 200         | 230    | 250           |
| Cracked concrete                |                     |      |     |     |       |          |             |        |               |
| Vinimum spacing                 | S <sub>min</sub>    | [mm] | 40  | 45  | 60    | 60       | 95          | 100    | 125           |
|                                 | for $c \ge$         | [mm] | 70  | 70  | 100   | 100      | 150         | 180    | 300           |
| Minimum edge distance           | C <sub>min</sub>    | [mm] | 40  | 45  | 60    | 60       | 95          | 100    | 180           |
|                                 | for $s \ge$         | [mm] | 80  | 90  | 140   | 180      | 200         | 220    | 540           |
| Non-cracked concrete            |                     |      |     |     |       |          |             |        |               |
| Vinimum spacing                 | S <sub>min</sub>    | [mm] | 40  | 45  | 60    | 65       | 90          | 100    | 125           |
|                                 | for $c \ge$         | [mm] | 80  | 70  | 120   | 120      | 180         | 180    | 300           |
| Minimum edge distance           | C <sub>min</sub>    | [mm] | 50  | 50  | 75    | 80       | 130         | 100    | 180           |
|                                 | for s $\geq$        | [mm] | 100 | 100 | 150   | 150      | 240         | 220    | 540           |
| Stainless steel A4, HCR         |                     |      |     |     |       |          |             |        |               |
| Standard thickness of member    | h <sub>min,1</sub>  | [mm] | 100 | 120 | 140   | 160      | 200         | 250    |               |
| Cracked concrete                |                     | -    |     |     |       |          |             |        |               |
| Vinimum spacing                 | S <sub>min</sub>    | [mm] | 40  | 50  | 60    | 60       | 95          | 125    |               |
|                                 | for c ≥             | [mm] | 70  | 75  | 100   | 100      | 150         | 125    | 1 /           |
| Vinimum edge distance           | Cmin                | [mm] | 40  | 55  | 60    | 60       | 95          | 125    | 1 /           |
| -                               | for s ≥             | [mm] | 80  | 90  | 140   | 180      | 200         | 125    | 1/            |
| Non-cracked concrete            |                     |      |     | 1   |       |          |             |        |               |
| Minimum spacing                 | S <sub>min</sub>    | [mm] | 40  | 50  | 60    | 65       | 90          | 125    |               |
|                                 | for $c \ge$         | [mm] | 80  | 75  | 120   | 120      | 180         | 125    | 1 /           |
| /inimum edge distance           | Cmin                | [mm] | 50  | 60  | 75    | 80       | 130         | 125    | 1 /           |
|                                 | for $s \ge$         | [mm] | 100 | 120 | 150   | 150      | 240         | 125    | $\mathcal{V}$ |
| Minimum thickness of concrete   | member              |      |     |     |       |          |             |        |               |
| Steel zinc plated and stainless | steel A4, H         | CR   |     |     |       |          |             |        |               |
| Minimum thickness of member     | h <sub>min,2</sub>  | [mm] | 80  | 100 | 120   | 140      |             |        |               |
| Cracked concrete                | ,_                  |      |     |     |       |          |             | ~      |               |
| Minimum spacing                 | S <sub>min</sub>    | [mm] | 40  | 45  | 60    | 70       |             | /      | 1             |
|                                 | for c ≥             | [mm] | 70  | 90  | 100   | 160      | 1 /         |        | /             |
| Vinimum edge distance           | Cmin                | [mm] | 40  | 50  | 60    | 80       | 1 /         |        |               |
| -                               | for $s \ge$         | [mm] | 80  | 115 | 140   | 180      |             |        |               |
| Non-cracked concrete            |                     |      |     |     |       |          |             | /      |               |
| Vinimum spacing                 | S <sub>min</sub>    | [mm] | 40  | 60  | 60    | 80       | /           | /      | 1             |
|                                 | for c ≥             | [mm] | 80  | 140 | 120   | 180      | 1 /         |        | /             |
| Minimum edge distance           | Cmin                | [mm] | 50  | 90  | 75    | 90       | 1 /         |        |               |
| -                               | for $s \ge$         | [mm] | 100 | 140 | 150   | 200      |             |        |               |
|                                 |                     |      |     |     | •     |          |             |        |               |
| Fire exposure from one side     |                     | [ma] |     |     | 0     |          |             |        |               |
| Minimum spacing                 | S <sub>min,fi</sub> | [mm] |     |     |       |          | bient tempe |        |               |
| Minimum edge distance           | C <sub>min,fi</sub> | [mm] |     |     | Seen  | ormal am | bient tempe | rature |               |
| Fire exposure from more than o  |                     |      |     |     |       |          |             |        |               |
| Minimum spacing                 | S <sub>min,fi</sub> | [mm] |     |     | See n |          | bient tempe | rature |               |
| Minimum edge distance           | C <sub>min,fi</sub> | [mm] |     |     |       | ≥ 300    | mm          |        |               |

# Ter Laare Wedge Anchor DX FAST ETA 1

#### Intended use


Minimum spacings and edge distances for standard anchorage depth



# Installation instructions DX FAST ETA 1

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of the anchor.
  Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.



# Ter Laare Wedge Anchor DX FAST ETA 1

Intended Use Installation instructions



#### Installation parameters DX-I FAST ETA 1 Table B4:

| Anchor size                                |                    |                       |      | M6   | M8    | M10  | M12  |
|--------------------------------------------|--------------------|-----------------------|------|------|-------|------|------|
| Effective anchorage depth                  |                    | h <sub>ef</sub>       | [mm] | 45   | 58    | 65   | 80   |
| Drill hole diameter                        |                    | do                    | [mm] | 8    | 10    | 12   | 16   |
| Cutting diameter of drill bit              |                    | $d_{\text{cut}} \leq$ | [mm] | 8,45 | 10,45 | 12,5 | 16,5 |
| Depth of drill hole                        |                    | h₁ >                  | [mm] | 60   | 75    | 90   | 105  |
| Screwing depth of threaded rod             |                    | $L_{sd}^{(2)} \ge$    | [mm] | 9    | 12    | 15   | 18   |
|                                            | T <sub>inst</sub>  | S                     | [Nm] | 10   | 30    | 30   | 55   |
| Installation moment,                       |                    | SK                    | [Nm] | 10   | 25    | 40   | 50   |
| zinc plated steel                          |                    | В                     | [Nm] | 8    | 25    | 30   | 45   |
| Installation moment,                       |                    | S                     | [Nm] | 15   | 40    | 50   | 100  |
|                                            | T <sub>inst</sub>  | SK                    | [Nm] | 12   | 25    | 45   | 60   |
| stainless steel A4, HCR                    |                    | В                     | [Nm] | 8    | 25    | 40   | 80   |
| Installation type V (Pre-setting i         | installatio        | n)                    |      |      |       |      |      |
| Diameter of clearance hole in the          | fixture            | d <sub>f</sub> ≤      | [mm] | 7    | 9     | 12   | 14   |
|                                            |                    | S                     | [mm] | 1    | 1     | 1    | 1    |
| Minimum thickness of fixture               | t <sub>fix</sub> ≥ | SK                    | [mm] | 5    | 7     | 8    | 9    |
|                                            |                    | В                     | [mm] | 1    | 1     | 1    | 1    |
| Installation type D (Through-se            | tting insta        | allation)             |      |      |       |      |      |
| Diameter of clearance hole in the          |                    | d <sub>f</sub> ≤      | [mm] | 9    | 12    | 14   | 18   |
|                                            |                    | S                     | [mm] | 5    | 7     | 8    | 9    |
| Minimum thickness of fixture <sup>1)</sup> | t <sub>fix</sub> ≥ | SK                    | [mm] | 9    | 12    | 14   | 16   |
|                                            |                    | В                     | [mm] | 5    | 7     | 8    | 9    |

<sup>1)</sup> The minimum thickness of fixture can be reduced to the value of installation type V, if the shear load at steel failure is designed with lever arm. <sup>2)</sup> see Annex A2

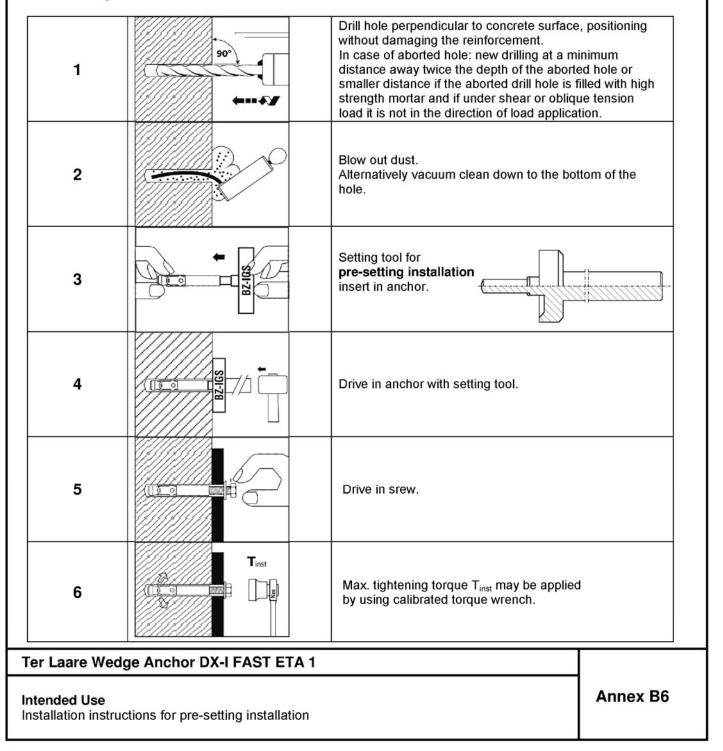
#### Minimum spacings and edge distances DX-I FAST ETA 1 Table B5:

| Anchor size                           |                     |      | M6  | M8                      | M10         | M12 |
|---------------------------------------|---------------------|------|-----|-------------------------|-------------|-----|
| Minimum thickness of concrete member  | h <sub>min</sub>    | [mm] | 100 | 120                     | 130         | 160 |
| Cracked concrete                      |                     |      |     |                         |             |     |
| Minimum spacing                       | S <sub>min</sub>    | [mm] | 50  | 60                      | 70          | 80  |
|                                       | for $c \ge$         | [mm] | 60  | 80                      | 100         | 120 |
| Minimum edge distance                 | C <sub>min</sub>    | [mm] | 50  | 60                      | 70          | 80  |
|                                       | for $s \ge$         | [mm] | 75  | 100                     | 100         | 120 |
| Non-cracked concrete                  |                     |      |     |                         |             |     |
| Minimum spacing                       | S <sub>min</sub>    | [mm] | 50  | 60                      | 65          | 80  |
|                                       | for $c \ge$         | [mm] | 80  | 100                     | 120         | 160 |
| Minimum edge distance                 | C <sub>min</sub>    | [mm] | 50  | 60                      | 70          | 100 |
|                                       | for $s \ge$         | [mm] | 115 | 155                     | 170         | 210 |
| Fire exposure from one side           |                     |      |     |                         |             |     |
| Minimum spacing                       | S <sub>min,fi</sub> | [mm] | (   | See normal <sup>-</sup> | temperature | e   |
| Minimum edge distance                 | C <sub>min,fi</sub> | [mm] | ę   | See normal <sup>.</sup> | temperature | e   |
| Fire exposure from more than one side |                     |      |     |                         |             |     |
| Minimum spacing                       | S <sub>min,fi</sub> | [mm] |     | See normal <sup>-</sup> | temperature | e   |
| Minimum edge distance                 | C <sub>min.fi</sub> | [mm] |     | ≥ 300                   | ) mm        |     |

# Ter Laare Wedge Anchor DX-I FAST ETA 1

#### Intended use

Installation parameters, minimum spacings and edge distances




# Installation instructions DX-I V FAST ETA 1

The fitness for use of the anchor can only be assumed if the anchor is installed as follows:

- Anchor installation carried out by appropriately qualified personnel and under the supervision of the person responsible for technical matters of the site,
- Use of the anchor only as supplied by the manufacturer without exchanging the components of an anchor.
- Checks before placing the anchor to ensure that the strength class of the concrete in which the anchor is to be placed is in the range given and is not lower than that of the concrete to which the characteristic loads apply
- Check of concrete being well compacted, e.g. without significant voids,
- Edge distances and spacing not less than the specified values without minus tolerances.

# Pre-setting installation





# Installation instructions DX-I D FAST ETA 1

# Through-setting installation

| 1 | 90°             | Drill hole perpendicular to concrete surface, positioning<br>without damaging the reinforcement.<br>In case of aborted hole: new drilling at a minimum<br>distance away of twice the depth of the aborted hole or<br>smaller distance if the aborted drill hole is filled with high<br>strength mortar and if under shear or oblique tension load<br>it is not in the direction of load application. |
|---|-----------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| 2 |                 | Blow out dust.<br>Alternatively vacuum clean down to the bottom of the hole.                                                                                                                                                                                                                                                                                                                         |
| 3 | E BZ-IGS        | Setting tool for <b>through-setting</b><br>installation insert in<br>anchor.                                                                                                                                                                                                                                                                                                                         |
| 4 | ₩<br>E C BZ-IGS | Drive in anchor with setting tool.                                                                                                                                                                                                                                                                                                                                                                   |
| 5 |                 | Drive in screw.                                                                                                                                                                                                                                                                                                                                                                                      |
| 6 |                 | Max. tightening torque T <sub>inst</sub> may be applied by using calibrated torque wrench.                                                                                                                                                                                                                                                                                                           |

# Ter Laare Wedge Anchor DX-I FAST ETA 1

# Intended Use

Installation instructions for through-setting installation



| Table C1: Characteristic va<br>cracked concre       |                     |      |                  | •   |     | A 1 zinc                                    | plated,   | ,   |     |
|-----------------------------------------------------|---------------------|------|------------------|-----|-----|---------------------------------------------|-----------|-----|-----|
| design method A                                     | •                   |      |                  |     |     | CEN/TS                                      | \$ 1992-4 | ŀ   |     |
| Anchor size                                         |                     |      | M8               | M10 | M12 | M16                                         | M20       | M24 | M27 |
| Installation safety factor                          | γ2 = γinst          | [-]  |                  |     |     | 1,0                                         |           |     |     |
| Steel failure                                       |                     |      |                  |     |     |                                             |           |     |     |
| Characteristic tension<br>resistance                | N <sub>Rk,s</sub>   | [kN] | 16               | 27  | 40  | 60                                          | 86        | 126 | 196 |
| Partial safety factor                               | γ́мs                | [-]  | 1,               | 53  | 1   | ,5                                          | 1,6       | 1   | ,5  |
| Pull-out                                            |                     |      |                  |     |     |                                             |           |     |     |
| Standard anchorage depth                            |                     |      |                  |     |     |                                             |           |     |     |
| Characteristic resistance in<br>concrete C20/25     | N <sub>Rk,p</sub>   | [kN] | 5                | 9   | 16  | 25                                          | 1)        | 1)  | 1)  |
| Reduced anchorage depth                             |                     |      |                  |     |     |                                             |           |     |     |
| Characteristic resistance in concrete C20/25        | $N_{Rk,p,red}$      | [kN] | 5                | 7,5 | 1)  | 1)                                          |           |     |     |
| Increasing factor for $N_{Rk,p}$ and $N_{Rk,p,red}$ | $\psi c$            | [-]  |                  |     |     | $\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$ | 5         |     |     |
| Concrete cone failure                               |                     |      |                  |     |     |                                             |           |     |     |
| Effective anchorage depth                           | h <sub>ef</sub>     | [mm] | 46               | 60  | 70  | 85                                          | 100       | 115 | 125 |
| Reduced anchorage depth                             | h <sub>ef,red</sub> | [mm] | 35 <sup>2)</sup> | 40  | 50  | 65                                          |           |     |     |
| Factor according to<br>CEN/TS 1992-4                | k <sub>cr</sub>     | [-]  |                  |     |     | 7,2                                         | -         |     |     |

<sup>1)</sup> Pull-out is not decisive.

<sup>2)</sup> Use restricted to anchoring of structural components statically indeterminate.

| Ter Laare Wedge Anchor | DX FAST ETA 1 |
|------------------------|---------------|
|------------------------|---------------|

**Performance** Characteristic values for **tension loads**, DX FAST ETA 1 **zinc plated cracked concrete**, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4



| Table C2: Characteristic valuecracked concrete,design method A act | static and                     | l quas | i-static a       | ction, |                                      |                                        |      |     |
|--------------------------------------------------------------------|--------------------------------|--------|------------------|--------|--------------------------------------|----------------------------------------|------|-----|
| Anchor size                                                        |                                |        | M8               | M10    | M12                                  | M16                                    | M20  | M24 |
| Installation safety factor                                         | $\gamma_2 = \gamma_{inst}$     | [-]    |                  | 1      |                                      | 1,0                                    |      |     |
| Steel failure                                                      |                                |        |                  |        |                                      |                                        |      |     |
| Characteristic tension resistance                                  | $N_{Rk,s}$                     | [kN]   | 16               | 27     | 40                                   | 64                                     | 108  | 110 |
| Partial safety factor                                              | γ́Ms                           | [-]    |                  | 1      | ,5                                   |                                        | 1,68 | 1,5 |
| Pull-out                                                           |                                |        |                  |        |                                      |                                        |      |     |
| Standard anchorage depth                                           |                                |        |                  |        |                                      |                                        |      |     |
| Characteristic resistance in<br>concrete C20/25                    | $N_{Rk,p}$                     | [kN]   | 5                | 9      | 16                                   | 25                                     | 1)   | 40  |
| Reduced anchorage depth                                            |                                |        |                  |        |                                      |                                        |      |     |
| Characteristic resistance in<br>concrete C20/25                    | N <sub>Rk,p,red</sub>          | [kN]   | 5                | 7,5    | 1)                                   | 1)                                     |      |     |
| Increasing factor for $N_{Rk,p \text{ and }} N_{Rk,p,red}$         | ψς                             | [-]    |                  |        | $\left(\frac{f_{cl}}{f_{cl}}\right)$ | $\left(\frac{x,cube}{25}\right)^{0,5}$ |      |     |
| Concrete cone failure                                              |                                |        |                  |        |                                      |                                        |      |     |
| Effective anchorage depth                                          | h <sub>ef</sub>                | [mm]   | 46               | 60     | 70                                   | 85                                     | 100  | 125 |
| Reduced anchorage depth                                            | $\mathbf{h}_{\mathrm{ef,red}}$ | [mm]   | 35 <sup>2)</sup> | 40     | 50                                   | 65                                     |      |     |
| Factor according to<br>CEN/TS 1992-4                               | <b>k</b> <sub>cr</sub>         | [-]    |                  |        |                                      | 7,2                                    |      |     |

<sup>1)</sup> Pull-out is not decisive.

<sup>2)</sup> Use restricted to anchoring of structural components statically indeterminate.

| Ter Laare Wedge Anch | or DX FAST ETA 1 |
|----------------------|------------------|
|----------------------|------------------|



| able C3: Characteristic v<br>non-cracked co<br>design method                                                                          | oncrete, st                                | atic a   | nd quas          | si-static                              | action,         |                                             | •                   |                   |                   |
|---------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------|----------|------------------|----------------------------------------|-----------------|---------------------------------------------|---------------------|-------------------|-------------------|
| Anchor size                                                                                                                           |                                            |          | M8               | M10                                    | M12             | M16                                         | M20                 | M24               | M27               |
| nstallation safety factor                                                                                                             | γ2 = γinst                                 | [-]      |                  |                                        |                 | 1,0                                         |                     |                   | •                 |
| Steel failure                                                                                                                         |                                            |          |                  |                                        |                 |                                             |                     |                   |                   |
| Characteristic tension resistance                                                                                                     | N <sub>Rk,s</sub>                          | [kN]     | 16               | 27                                     | 40              | 60                                          | 86                  | 126               | 196               |
| Partial safety factor                                                                                                                 | γMs                                        | [-]      | 1,               | 53                                     | 1               | ,5                                          | 1,6                 | 1                 | ,5                |
| Pull-out                                                                                                                              |                                            |          |                  |                                        |                 |                                             |                     |                   |                   |
| Standard anchorage depth                                                                                                              |                                            |          |                  |                                        |                 |                                             |                     |                   |                   |
| Characteristic resistance in<br>non-cracked concrete C20/25                                                                           | N <sub>Rk,p</sub>                          | [kN]     | 12               | 16                                     | 25              | 35                                          | 1)                  | 1)                | 1)                |
| Reduced anchorage depth                                                                                                               |                                            |          |                  |                                        |                 |                                             |                     |                   |                   |
| Characteristic resistance in<br>on-cracked concrete C20/25                                                                            | N <sub>Rk,p,red</sub>                      | [kN]     | 7,5              | 9                                      | 1)              | 1)                                          |                     |                   |                   |
| plitting For the proof against splittin                                                                                               | g failure N <sup>⁰</sup> <sub>Rk,c</sub> h | as to be | replaced b       | y N <sup>o</sup> <sub>Rk,sp</sub> witl | h considerat    | tion of the n                               | nember thick        | ness              |                   |
| Standard anchorage depth<br>Splitting for standard thickness on<br>the values s <sub>cr,sp</sub> and c <sub>cr,sp</sub> may be linear |                                            |          |                  |                                        |                 |                                             |                     | ed;               |                   |
| Standard thickness of concrete                                                                                                        | h <sub>min,1</sub> ≥                       |          | 100              | 120                                    | 140             | 170                                         | 200                 | 230               | 250               |
| Case 1                                                                                                                                | ,.                                         |          |                  |                                        |                 |                                             | 1                   |                   |                   |
| Characteristic resistance in on-cracked concrete C20/25                                                                               | N <sup>0</sup> <sub>Rk,sp</sub>            | [kN]     | 9                | 12                                     | 20              | 30                                          | 40                  | 1)                | 50                |
| pacing (edge distance) s                                                                                                              | <sub>cr,sp</sub> (= 2 c <sub>cr,sp</sub> ) | [mm]     |                  |                                        |                 | 3 h <sub>ef</sub>                           |                     |                   |                   |
| Case 2                                                                                                                                |                                            |          |                  |                                        |                 |                                             |                     |                   |                   |
| haracteristic resistance                                                                                                              | N <sup>0</sup> <sub>Rk,sp</sub>            | [kN]     | 12               | 16                                     | 25              | 35                                          | 1)                  | 1)                | 1)                |
| n non-cracked concrete C20/25<br>Spacing (edge distance) s                                                                            | $cr,sp$ (= 2 $c_{cr,sp}$ )                 | [mm]     |                  |                                        | h <sub>ef</sub> |                                             | 4,4 h <sub>ef</sub> | 3 h <sub>ef</sub> | 5 h <sub>ef</sub> |
| splitting for minimum thickness of                                                                                                    |                                            | • •      |                  |                                        | Tief            |                                             | +,+ net             | J net             | Jilet             |
| inimum thickness of concrete                                                                                                          | h <sub>min,2</sub> ≥                       | [mm]     | 80               | 100                                    | 120             | 140                                         |                     |                   | 1                 |
| characteristic resistance                                                                                                             |                                            |          |                  |                                        |                 |                                             |                     |                   | /                 |
| n non-cracked concrete C20/25                                                                                                         | N <sup>0</sup> <sub>Rk,sp</sub>            | [kN]     | 12               | 16                                     | 25              | 35                                          |                     |                   |                   |
| Spacing (edge distance)                                                                                                               | Scr,sp (= 2 C <sub>cr,sp</sub> )           | [mm]     |                  | 5                                      | h <sub>ef</sub> |                                             | $\vee$              |                   | $\checkmark$      |
| Reduced anchorage depth                                                                                                               |                                            |          |                  | _                                      | _               |                                             |                     |                   |                   |
| linimum thickness of concrete                                                                                                         | h <sub>min,3</sub> ≥                       | [mm]     | 80               | 80                                     | 100             | 140                                         |                     |                   | ] ,               |
| Characteristic resistance                                                                                                             | N <sup>0</sup> <sub>Rk,sp</sub>            | [kN]     | 7,5              | 9                                      | 1)              | 1)                                          |                     |                   |                   |
|                                                                                                                                       | <sub>cr,sp</sub> (= 2 c <sub>cr,sp</sub> ) |          | 200              | 200                                    | 250             | 300                                         |                     |                   |                   |
| ncreasing factor<br>or N <sub>Rk,p(red)</sub> and N <sup>0</sup> <sub>Rk,sp</sub>                                                     | ψς                                         | [-]      |                  |                                        |                 | $\left(\frac{f_{ck,cube}}{25}\right)^{0,1}$ | 5                   | V                 | V                 |
| Concrete cone failure                                                                                                                 |                                            |          |                  |                                        |                 | 10 /                                        |                     |                   |                   |
| ffective anchorage depth                                                                                                              | h <sub>ef</sub>                            | [mm]     | 46               | 60                                     | 70              | 85                                          | 100                 | 115               | 125               |
| Reduced anchorage depth                                                                                                               | h <sub>ef,red</sub>                        | [mm]     | 35 <sup>2)</sup> | 40                                     | 50              | 65                                          |                     |                   |                   |
| actor according to CEN/TS 1992                                                                                                        |                                            | [-]      |                  |                                        |                 | 10,1                                        |                     |                   |                   |
| Pull-out is not decisive.<br>Use restricted to anchoring of structu                                                                   |                                            |          | ndetermin        | ate.                                   |                 | ·                                           |                     |                   |                   |
| Fer Laare Wedge Anchor                                                                                                                | DX FAST E                                  | TA 1     |                  |                                        |                 |                                             |                     |                   |                   |
| Performance<br>Characteristic values for tension<br>non-cracked concrete, static                                                      |                                            |          |                  | inc plate                              | d,              |                                             |                     | Annex             | c C3              |



| Anchor size                                                                                                |                                              |            | M8                                   | M10                       | M12             | M16             | M20       | M24    |
|------------------------------------------------------------------------------------------------------------|----------------------------------------------|------------|--------------------------------------|---------------------------|-----------------|-----------------|-----------|--------|
| nstallation safety factor                                                                                  | $\gamma_2 = \gamma_{inst}$                   | [-]        |                                      |                           |                 | 1,0             |           |        |
| Steel failure                                                                                              | 12 = 1 inst                                  | 11         |                                      |                           |                 | .,-             |           |        |
| Characteristic tension resistance                                                                          | N <sub>Rk,s</sub>                            | [kN]       | 16                                   | 27                        | 40              | 64              | 108       | 110    |
| Partial safety factor                                                                                      |                                              | [-]        | 10                                   |                           | ,5              | 01              | 1,68      | 1,5    |
| Pull-out                                                                                                   | γ́Ms                                         | []         |                                      |                           | ,0              |                 | 1,00      | 1,0    |
|                                                                                                            |                                              |            |                                      |                           |                 |                 |           |        |
| Standard anchorage depth Characteristic resistance in                                                      |                                              |            |                                      |                           |                 |                 | 0         | 0      |
| non-cracked concrete C20/25                                                                                | N <sub>Rk,p</sub>                            | [kN]       | 12                                   | 16                        | 25              | 35              | 1)        | 1)     |
| Reduced anchorage depth                                                                                    |                                              |            |                                      |                           |                 |                 |           |        |
| Characteristic resistance in                                                                               | N <sub>Rk,p,red</sub>                        | [kN]       | 7,5                                  | 9                         | 1)              | 1)              |           |        |
| non-cracked concrete C20/25                                                                                |                                              |            |                                      |                           |                 |                 |           | $\sim$ |
| Splitting For the proof against splitting                                                                  | g failure N° <sub>Rk,c</sub> has to          | be repla   | aced by N <sup>V</sup> <sub>Rk</sub> | <sub>,sp</sub> with consi | deration of th  | ne member       | thickness |        |
| Standard anchorage depth                                                                                   |                                              |            |                                      |                           |                 |                 |           |        |
| Splitting for <b>standard thickness o</b><br>he values $s_{\alpha,sp}$ and $c_{\alpha,sp}$ may be linearly |                                              |            |                                      |                           |                 |                 | pplied;   |        |
| Standard thickness of concrete                                                                             | h <sub>min,1</sub> ≥                         | [mm]       | 100                                  | 120                       | 140             | 1,sp= 1,0)      | 200       | 250    |
| Case 1                                                                                                     | 11min,1 =                                    | [iiiii]    | 100                                  | 120                       | 140             | 100             | 200       | 230    |
| Characteristic resistance in                                                                               | 0                                            |            | -                                    |                           |                 |                 |           |        |
| non-cracked concrete C20/25                                                                                | N <sup>0</sup> <sub>Rk,sp</sub>              | [kN]       | 9                                    | 12                        | 20              | 30              | 40        |        |
| Spacing (edge distance)                                                                                    | $s_{cr,sp}$ (= 2 $c_{cr,sp}$ )               | [mm]       |                                      |                           | 3               | 1 <sub>ef</sub> |           |        |
| Case 2                                                                                                     |                                              |            |                                      |                           |                 |                 |           |        |
| Characteristic resistance in                                                                               | N <sup>0</sup> <sub>Rk,sp</sub>              | [kN]       | 12                                   | 16                        | 25              | 35              | 1)        | 1)     |
| non-cracked concrete C20/25                                                                                |                                              |            |                                      |                           |                 |                 | 140       | 500    |
| Spacing (edge distance)                                                                                    | s <sub>cr,sp</sub> (= 2 c <sub>cr,sp</sub> ) | [mm]       | 230                                  | 250                       | 280             | 400             | 440       | 500    |
| Splitting for <b>minimum thickness c</b>                                                                   |                                              |            |                                      | 400                       | 4.00            | 4.40            |           | 1      |
| Minimum thickness of concrete Characteristic resistance in                                                 | h <sub>min,2</sub> ≥                         | [mm]       | 80                                   | 100                       | 120             | 140             | +         |        |
| non-cracked concrete C20/25                                                                                | N <sup>0</sup> <sub>Rk,sp</sub>              | [kN]       | 12                                   | 16                        | 25              | 35              |           |        |
| Spacing (edge distance)                                                                                    | s <sub>cr,sp</sub> (= 2 c <sub>cr,sp</sub> ) | [mm]       |                                      | 5                         | h <sub>ef</sub> |                 |           |        |
| Reduced anchorage depth                                                                                    |                                              |            |                                      |                           |                 |                 | v         | v      |
| Minimum thickness of concrete                                                                              | h <sub>min,3</sub> ≥                         | [mm]       | 80                                   | 80                        | 100             | 140             |           | 1      |
| Characteristic resistance in                                                                               | N <sup>0</sup> <sub>Rk,sp</sub>              | [kN]       | 7,5                                  | 9                         | 1)              | 1)              | 1 /       |        |
| non-cracked concrete C20/25                                                                                |                                              |            | _                                    |                           |                 |                 |           |        |
| Spacing (edge distance)                                                                                    | $s_{cr,sp}$ (= 2 $c_{cr,sp}$ )               | [mm]       | 200                                  | 200                       | 250             | 300             |           |        |
| ncreasing factor                                                                                           | ψς                                           | [-]        |                                      |                           | $(f_{ck,cu})$   |                 |           |        |
| for $N_{Rk,p(red)}$ and $N^0_{Rk,sp}$                                                                      | ŗ                                            | .,         |                                      |                           | \ 25            | )               |           |        |
| Concrete cone failure                                                                                      |                                              |            |                                      | 1                         | 1               |                 | 1         | 1      |
| Effective anchorage depth                                                                                  | h <sub>ef</sub>                              | [mm]       | 46                                   | 60                        | 70              | 85              | 100       | 125    |
| Reduced anchorage depth                                                                                    | h <sub>ef,red</sub>                          | [mm]       | 35 <sup>2)</sup>                     | 40                        | 50              | 65              |           |        |
| Factor according to CEN/TS 1992                                                                            | -4 k <sub>ucr</sub>                          | [-]        |                                      |                           |                 | 10,1            |           |        |
| Pull-out is not decisive.<br>Use restricted to anchoring of structur                                       | al components stati                          | cally inde | eterminate.                          |                           |                 |                 |           |        |
| Ter Laare Wedge Anchor [                                                                                   |                                              | 4          |                                      |                           |                 |                 |           |        |



# Table C5: Characteristic values for shear loads, DX FAST ETA 1,cracked and non-cracked concrete, static or quasi static action,design method A according to ETAG 001, Annex C or CEN/TS 1992-4

| Anchor size                           |                            |                                |          | M8   | M10  | M12 | M16 | M20  | M24   | M27    |
|---------------------------------------|----------------------------|--------------------------------|----------|------|------|-----|-----|------|-------|--------|
| Installation safety fac               | tor                        | $\gamma_2 = \gamma_{inst}$     | [-]      |      |      |     | 1,0 |      |       |        |
| Steel failure withou                  | it lever arm, Steel        | zinc pla                       | ted      |      |      |     |     |      |       |        |
| Characteristic shear                  | resistance                 | $V_{Rk,s}$                     | [kN]     | 12,2 | 20,1 | 30  | 55  | 69   | 114   | 169,4  |
| Factor for ductility                  |                            | <b>k</b> <sub>2</sub>          | [-]      | 1,0  |      |     |     |      |       |        |
| Partial safety factor                 |                            | γ́Ms                           | [-]      |      | 1,   | 25  |     | 1,33 | 1,25  | 1,25   |
| Steel failure withou                  | ıt lever arm, Stain        | less stee                      | el A4, H | CR   |      |     |     |      |       |        |
| Characteristic shear                  | resistance                 | $V_{Rk,s}$                     | [kN]     | 13   | 20   | 30  | 55  | 86   | 123,6 |        |
| Factor for ductility                  | <b>k</b> <sub>2</sub>      | [-]                            |          |      |      | 1,0 |     |      |       |        |
| Partial safety factor                 | γ́Ms                       | [-]                            |          | 1,   | 25   |     | 1,4 | 1,25 |       |        |
| Steel failure with le                 | ever arm, Steel zin        | c plated                       |          |      |      |     |     |      |       |        |
| Characteristic bending resistance     |                            | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]     | 23   | 47   | 82  | 216 | 363  | 898   | 1331,5 |
| Partial safety factor                 |                            | γ́Ms                           | [-]      |      | 1,   | 25  |     | 1,33 | 1,25  | 1,25   |
| Steel failure with le                 | ever arm, Stainles         | s steel A                      | 4, HCR   |      |      |     |     |      |       |        |
| Characteristic bendi                  | ng resistance              | $M^0_{Rk,s}$                   | [Nm]     | 26   | 52   | 92  | 200 | 454  | 785,4 |        |
| Partial safety factor                 |                            | γ́мs                           | [-]      |      | 1,   | 25  |     | 1,4  | 1,25  |        |
| Concrete pry-out fa                   | ailure                     |                                |          |      |      |     |     |      |       |        |
| Factor k acc. ETAG k3 acc. CEN/TS 199 |                            | <b>k</b> <sub>(3)</sub>        | [-]      |      | 2,   | 4   |     |      | 2,8   |        |
| Concrete edge fail                    | ure                        |                                |          |      |      |     |     | _    |       | _      |
| Effective length of anchor in shear   | Steel zinc<br>plated       | l <sub>f</sub>                 | [mm]     | 46   | 60   | 70  | 85  | 100  | 115   | 125    |
| loading with h <sub>ef</sub>          | Stainless steel<br>A4, HCR | ۱ <sub>f</sub>                 | [mm]     | 46   | 60   | 70  | 85  | 100  | 125   |        |
| Effective length of anchor in shear   | Steel zinc<br>plated       | I <sub>f,red</sub>             | [mm]     | 35   | 40   | 50  | 65  |      |       |        |
| loading with h <sub>ef,red</sub>      | Stainless steel<br>A4, HCR | I <sub>f,red</sub>             | [mm]     | 35   | 40   | 50  | 65  |      |       |        |
| Outside diameter of                   | anchor                     | $\mathbf{d}_{nom}$             | [mm]     | 8    | 10   | 12  | 16  | 20   | 24    | 27     |

# Ter Laare Wedge Anchor DX FAST ETA 1

#### Performance

Characteristic values for **shear loads**, DX FAST ETA 1, **cracked** and **non-cracked concrete**, static or quasi static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4



| Anchor size                                                                                                                                                                                                                              |                                                                                                                                                       |                                                | M10                                   | M12                        | M16                | 1           |
|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------------------------------------------------------------------------------------------------------------------------------------------------|------------------------------------------------|---------------------------------------|----------------------------|--------------------|-------------|
| Installation safety facto                                                                                                                                                                                                                | <b>Γ</b> γ <sub>2</sub> = γinst                                                                                                                       | [-]                                            |                                       | 1                          | ,0                 |             |
| Steel failure, steel zin                                                                                                                                                                                                                 | c plated                                                                                                                                              |                                                |                                       |                            |                    |             |
| Characteristic<br>resistance <b>C1</b>                                                                                                                                                                                                   | N <sub>Rk,s,seis,C1</sub>                                                                                                                             | [kN]                                           | 27                                    | 40                         | 60                 |             |
| Characteristic<br>resistance <b>C2</b>                                                                                                                                                                                                   | N <sub>Rk,s,seis,C2</sub>                                                                                                                             | [kN]                                           | 27                                    | 40                         | 60                 |             |
| Partial safety factor                                                                                                                                                                                                                    | γ̃Ms,seis                                                                                                                                             | [-]                                            | 1,53                                  | 1                          | ,5                 |             |
| Steel failure, stainless                                                                                                                                                                                                                 |                                                                                                                                                       |                                                | .,                                    |                            | ,-                 |             |
| Characteristic<br>resistance <b>C1</b>                                                                                                                                                                                                   | N <sub>Rk,s,seis,C1</sub>                                                                                                                             | [kN]                                           | 27                                    | 40                         | 64                 |             |
| Characteristic<br>resistance <b>C2</b>                                                                                                                                                                                                   | N <sub>Rk,s,seis,C2</sub>                                                                                                                             | [kN]                                           | 27                                    | 40                         | 64                 |             |
| Partial safety factor                                                                                                                                                                                                                    | γ̃Ms,seis                                                                                                                                             | [-]                                            |                                       | 1,5                        |                    | 1           |
| Pull-out                                                                                                                                                                                                                                 | / MS,SelS                                                                                                                                             | LJ                                             |                                       | .,-                        |                    | <u> </u>    |
|                                                                                                                                                                                                                                          |                                                                                                                                                       |                                                |                                       |                            | 1                  | <u> </u>    |
| Characteristic                                                                                                                                                                                                                           | N <sub>Rk,p,seis,C1</sub>                                                                                                                             | [kN]                                           | 9                                     | 16                         | 25                 |             |
| resistance C1<br>Characteristic<br>resistance C2<br>Shear loads                                                                                                                                                                          | N <sub>Rk,p,seis,C2</sub>                                                                                                                             | [kN]                                           | 3,6                                   | 16<br>10,2                 | 25<br>13,8         |             |
| resistance C1<br>Characteristic<br>resistance C2<br>Shear loads<br>Steel failure without lo<br>Characteristic<br>resistance C1                                                                                                           | N <sub>Rk,p,seis,C2</sub><br>ever arm, Steel a<br>V <sub>Rk,s,seis,C1</sub>                                                                           | [kN]<br>zinc pla                               | 3,6<br>ated<br>20                     | 10,2<br>27                 | 13,8<br>44         |             |
| resistance C1<br>Characteristic<br>resistance C2<br>Shear loads<br>Steel failure without le<br>Characteristic                                                                                                                            | N <sub>Rk,p,seis,C2</sub>                                                                                                                             | [kN]                                           | 3,6<br>ated                           | 10,2                       | 13,8               |             |
| resistance C1<br>Characteristic<br>resistance C2<br>Shear loads<br>Steel failure without la<br>Characteristic<br>resistance C1<br>Characteristic<br>resistance C2<br>Partial safety factor                                               | N <sub>Rk,p,seis,C2</sub><br>ever arm, Steel a<br>V <sub>Rk,s,seis,C1</sub><br>V <sub>Rk,s,seis,C2</sub><br>γ <sub>Ms,seis</sub>                      | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[-]            | 3,6<br>ated<br>20<br>14               | 10,2<br>27<br>16,2<br>1,25 | 13,8<br>44         | 2           |
| resistance C1<br>Characteristic<br>resistance C2<br>Shear loads<br>Steel failure without le<br>Characteristic<br>resistance C1<br>Characteristic<br>resistance C2<br>Partial safety factor<br>Steel failure without le                   | N <sub>Rk,p,seis,C2</sub><br>ever arm, Steel a<br>V <sub>Rk,s,seis,C1</sub><br>V <sub>Rk,s,seis,C2</sub><br>γ <sub>Ms,seis</sub>                      | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[-]            | 3,6<br>ated<br>20<br>14               | 10,2<br>27<br>16,2<br>1,25 | 13,8<br>44         | 2<br>5<br>1 |
| resistance C1<br>Characteristic<br>resistance C2<br>Shear loads<br>Steel failure without la<br>Characteristic<br>resistance C1<br>Characteristic<br>resistance C2<br>Partial safety factor                                               | N <sub>Rk,p,seis,C2</sub><br>ever arm, Steel a<br>V <sub>Rk,s,seis,C1</sub><br>V <sub>Rk,s,seis,C2</sub><br>γ <sub>Ms,seis</sub>                      | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[-]            | 3,6<br>ated<br>20<br>14               | 10,2<br>27<br>16,2<br>1,25 | 13,8<br>44         | 2           |
| resistance C1<br>Characteristic<br>resistance C2<br>Shear loads<br>Steel failure without le<br>Characteristic<br>resistance C1<br>Characteristic<br>resistance C2<br>Partial safety factor<br>Steel failure without le<br>Characteristic | N <sub>Rk,p,seis,C2</sub><br>ever arm, Steel a<br>V <sub>Rk,s,seis,C1</sub><br>V <sub>Rk,s,seis,C2</sub><br>γ <sub>Ms,seis</sub><br>ever arm, Stainle | [kN]<br>[kN]<br>[kN]<br>[kN]<br>[-]<br>ess ste | 3,6<br>ated<br>20<br>14<br>el A4, HCR | 10,2<br>27<br>16,2<br>1,25 | 13,8<br>44<br>35,7 | 5           |

#### Performance

Characteristic resistance for **seismic loading**, DX FAST ETA 1, **standard anchorage depth**, performance category **C1** and **C2**, design according to TR045



|                  | aracteristi<br>A 1, <b>stano</b><br>0/60, desi | dard an                                  | chorag | e depth | <b>i,</b> cracke | d and n | on-crack | ed conc |       |           |
|------------------|------------------------------------------------|------------------------------------------|--------|---------|------------------|---------|----------|---------|-------|-----------|
| Anchor size      |                                                |                                          |        | M8      | M10              | M12     | M16      | M20     | M24   | M27       |
| Tension load     |                                                |                                          |        |         |                  |         |          |         |       |           |
| Steel failure    |                                                |                                          |        |         |                  |         |          |         |       |           |
| Steel zinc plate | ed                                             |                                          |        |         |                  |         |          |         |       |           |
|                  | R30                                            | _                                        |        | 1,4     | 2,2              | 3,2     | 6,0      | 9,4     | 13,6  | 17,6      |
| Characteristic   | R60                                            | – N <sub>Rk,s,fi</sub>                   | [kN]   | 1,1     | 1,8              | 2,8     | 5,2      | 8,2     | 11,8  | 15,3      |
| resistance       | R90                                            | – INRk,s,fi                              | נאואן  | 0,8     | 1,4              | 2,4     | 4,4      | 6,9     | 10,0  | 13,0      |
|                  | R120                                           |                                          |        | 0,7     | 1,2              | 2,2     | 4,0      | 6,3     | 9,1   | 11,8      |
| Stainless steel  | A4, HCR                                        |                                          |        |         |                  |         |          |         |       |           |
|                  | R30                                            |                                          |        | 3,8     | 6,9              | 11,5    | 21,5     | 33,5    | 48,2  |           |
| Characteristic   | R60                                            | – N <sub>Rk,s,fi</sub>                   | [kN]   | 2,9     | 5,2              | 8,6     | 16       | 25,0    | 35,9  |           |
| resistance       | R90                                            | - RK,S,⊓                                 | [KN]   | 2,0     | 3,5              | 5,6     | 10,5     | 16,4    | 23,6  |           |
|                  | R120                                           |                                          |        | 1,6     | 2,7              | 4,2     | 7,8      | 12,1    | 17,4  |           |
| Shear load       |                                                |                                          |        |         |                  |         |          |         |       |           |
| Steel failure wi | thout lever                                    | arm                                      |        |         |                  |         |          |         |       |           |
| Steel zinc plate | ed                                             |                                          |        |         |                  |         |          |         |       |           |
|                  | R30                                            | _                                        |        | 1,6     | 2,6              | 3,8     | 7,0      | 11      | 16    | 20,6      |
| Characteristic   | R60                                            | - V <sub>Rk,s,fi</sub>                   | [kN]   | 1,5     | 2,5              | 3,6     | 6,8      | 11      | 15    | 19,8      |
| resistance       | R90                                            | − VRk,s,fi                               | נאואן  | 1,2     | 2,1              | 3,5     | 6,5      | 10      | 15    | 19,0      |
|                  | R120                                           |                                          |        | 1,0     | 2,0              | 3,4     | 6,4      | 10      | 14    | 18,6      |
| Stainless steel  | A4, HCR                                        |                                          |        |         |                  |         |          |         |       |           |
|                  | R30                                            | _                                        |        | 3,8     | 6,9              | 11,5    | 21,5     | 33,5    | 48,2  |           |
| Characteristic   | R60                                            | – V <sub>Rk,s,fi</sub>                   | [kN]   | 2,9     | 5,2              | 8,6     | 16       | 25,0    | 35,9  |           |
| resistance       | R90                                            | V Rk,s,ti                                | [KIN]  | 2,0     | 3,5              | 5,6     | 10,5     | 16,4    | 23,6  |           |
|                  | R120                                           |                                          |        | 1,6     | 2,7              | 4,2     | 7,8      | 12,1    | 17,4  |           |
| Steel failure wi | th lever arn                                   | n                                        |        |         |                  |         |          |         |       |           |
| Steel zinc plate | ed                                             |                                          |        |         |                  |         |          |         |       |           |
|                  | R30                                            | _                                        |        | 1,7     | 3,3              | 5,9     | 15       | 29      | 50    | 75        |
| Characteristic   | R60                                            | –<br>– M <sup>0</sup> <sub>Rk,s,fi</sub> | [Nm]   | 1,6     | 3,2              | 5,6     | 14       | 28      | 48    | 72        |
| resistance       | R90                                            | − IVI Rk,s,fi                            | נואוון | 1,2     | 2,7              | 5,4     | 14       | 27      | 47    | 69        |
|                  | R120                                           |                                          |        | 1,1     | 2,5              | 5,3     | 13       | 26      | 46    | 68        |
| Stainless steel  | A4, HCR                                        |                                          |        |         |                  |         |          |         |       |           |
|                  | R30                                            | _                                        |        | 3,8     | 9,0              | 17,9    | 45,5     | 88,8    | 153,5 |           |
| Characteristic   | R60                                            | –<br>– M <sup>0</sup> <sub>Rk,s,fi</sub> | [NIm]  | 2,9     | 6,8              | 13,3    | 33,9     | 66,1    | 114,3 | ] /       |
| resistance       | R90                                            | IVI Rk,s,fi                              | [Nm]   | 2,1     | 4,5              | 8,8     | 22,2     | 43,4    | 75,1  |           |
|                  | R120                                           |                                          |        | 1,6     | 3,4              | 6,5     | 16,4     | 32,1    | 55,5  | $\bigvee$ |

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out and concrete edge failure can be calculated according to TR020 / CEN/TS 1992-4. If pull-out is not decisive N<sub>Rk,p</sub> in Eq. 2.4 and Eq. 2.5, TR 020 must be replaced by N<sup>0</sup><sub>Rk,c</sub>.

### Ter Laare Wedge Anchor DX FAST ETA 1

#### Performance

Characteristic values for tension and shear load under fire exposure, DX FAST ETA 1, standard anchorage depth, cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D



| Anchor size                            |                     |      | M8  | M10  | M12  | M16  | M20  | M24  | M27       |
|----------------------------------------|---------------------|------|-----|------|------|------|------|------|-----------|
| Standard anchorage depth               |                     |      |     |      |      |      |      |      |           |
| Steel zinc plated                      |                     |      |     |      |      |      |      |      |           |
| Tension load in cracked concrete       | Ν                   | [kN] | 2,4 | 4,3  | 7,6  | 11,9 | 17,1 | 21,1 | 24        |
| Displacement                           | $\delta_{N0}$       | [mm] | 0,6 | 1,0  | 0,4  | 1,0  | 0,9  | 0,7  | 0,9       |
|                                        | δ <sub>N∞</sub>     | [mm] | 1,4 | 1,2  | 1,4  | 1,3  | 1,0  | 1,2  | 1,4       |
| Tension load in non-cracked concrete   | Ν                   | [kN] | 5,7 | 7,6  | 11,9 | 16,7 | 23,8 | 29,6 | 34        |
| Displacement                           | $\delta_{N0}$       | [mm] | 0,4 | 0,5  | 0,7  | 0,3  | 0,4  | 0,5  | 0,3       |
|                                        | δ <sub>N∞</sub>     | [mm] | 0   | ,8   | 1,4  |      | 0,8  |      | 1,4       |
| Displacements under seismic tension    | loads C2            |      |     |      |      |      |      |      |           |
| Displacements for DLS 8                | N,seis,C2(DLS)      | [mm] |     | 4,1  | 4,9  | 3,6  | 5,1  |      |           |
| Displacements for ULS 8                | N,seis,C2(ULS)      | [mm] |     | 13,8 | 15,7 | 9,5  | 15,2 |      |           |
| Stainless steel A4, HCR                |                     |      |     |      |      |      |      |      |           |
| Tension load in cracked concrete       | N                   | [kN] | 2,4 | 4,3  | 7,6  | 11,9 | 17,1 | 19,0 | /         |
| Displacement                           | δ <sub>N0</sub>     | [mm] | 0,7 | 1,8  | 0,4  | 0,7  | 0,9  | 0,5  |           |
|                                        | $\delta_{N^\infty}$ | [mm] | 1,2 | 1,4  | 1,4  | 1,4  | 1,0  | 1,8  |           |
| Tension load in non-cracked concrete N |                     | [kN] | 5,8 | 7,6  | 11,9 | 16,7 | 23,8 | 33,5 | /         |
| Displacement                           | δ <sub>N0</sub>     | [mm] | 0,6 | 0,5  | 0,7  | 0,2  | 0,4  | 0,5  |           |
|                                        | δ <sub>N∞</sub>     | [mm] | 1,2 | 1,0  | 1,4  | 0,4  | 0,8  | 1,1  |           |
| Displacements under seismic tension    |                     |      |     |      |      |      |      |      |           |
| Displacements for DLS 8                | N,seis,C2(DLS)      | [mm] |     | 4,1  | 4,9  | 3,6  | 5,1  |      | /         |
|                                        | N,seis,C2(ULS)      | [mm] |     | 13,8 | 15,7 | 9,5  | 15,2 |      |           |
| Reduced anchorage depth                |                     |      |     |      |      |      |      |      |           |
| Tension load in cracked concrete       | Ν                   | [kN] | 2,4 | 3,6  | 6,1  | 9,0  | /    | 1 /  |           |
| Displacement                           | δ <sub>N0</sub>     | [mm] | 0,8 | 0,7  | 0,5  | 1,0  |      |      |           |
|                                        | δ <sub>N∞</sub>     | [mm] | 1,2 | 1,0  | 0,8  | 1,1  |      |      | $\bigvee$ |
| Tension load in non-cracked concrete   | N                   | [kN] | 3,7 | 4,3  | 8,5  | 12,6 | /    | /    | /         |
| Displacement                           | δ <sub>N0</sub>     | [mm] | 0,1 | 0,2  | 0,2  | 0,2  |      |      |           |
| -                                      | δ <sub>N∞</sub>     | [mm] | 0,7 | 0,7  | 0,7  | 0,7  |      |      |           |

# Ter Laare Wedge Anchor DX FAST ETA 1

**Performance** Displacements under tension load



| Anchor size                                       |                       |                | M8  | M10  | M12  | M16  | M20          | M24  | M27  |
|---------------------------------------------------|-----------------------|----------------|-----|------|------|------|--------------|------|------|
| Standard anchorage de                             | epth                  |                |     |      |      |      |              |      |      |
| Steel zinc plated                                 |                       |                |     |      |      |      |              |      |      |
| Shear load in cracked and<br>non-cracked concrete | v <sup>b</sup>        | [kN]           | 6,9 | 11,4 | 17,1 | 31,4 | 36,8         | 64,9 | 96,8 |
| Displacement                                      | δ <sub>vo</sub>       | [mm]           | 2,0 | 3,2  | 3,6  | 3,5  | 1,8          | 3,5  | 3,6  |
|                                                   | $\delta_{V^\infty}$   | [mm]           | 3,0 | 4,7  | 5,5  | 5,3  | 2,7          | 5,3  | 5,4  |
| Displacements under seis                          | smic shear            | loads C        | 2   |      |      |      |              |      |      |
|                                                   | /,seis,C2(DLS)        | [mm]           |     | 2,7  | 3,5  | 4,3  | 4,7          |      |      |
| Displacements<br>for ULS <sub>ຽ</sub>             | /,seis,C2(ULS)        | [mm]           |     | 5,3  | 9,5  | 9,6  | 10,1         |      |      |
| Stainless steel A4, HCR                           |                       |                |     |      |      |      |              | -    |      |
| Shear load in cracked and<br>non-cracked concrete | v <sup>b</sup>        | [kN]           | 7,3 | 11,4 | 17,1 | 31,4 | 43,8         | 70,6 |      |
| Displacement                                      | δ <sub>v0</sub>       | [mm]           | 1,9 | 2,4  | 4,0  | 4,3  | 2,9          | 2,8  |      |
|                                                   | $\delta_{V^\infty}$   | [mm]           | 2,9 | 3,6  | 5,9  | 6,4  | 4,3          | 4,2  | /    |
| Displacements under seis                          | smic shear            | loads <b>C</b> | 2   |      |      |      |              |      |      |
|                                                   | /,seis,C2(DLS)        | [mm]           |     | 2,7  | 3,5  | 4,3  | 4,7          |      |      |
| Displacements for ULS $\delta_v$                  | /,seis,C2(ULS)        | [mm]           |     | 5,3  | 9,5  | 9,6  | 10,1         |      |      |
| Reduced anchorage de                              | pth                   |                |     |      |      |      |              |      |      |
| Steel zinc plated                                 |                       |                |     |      |      |      |              |      |      |
| Shear load in cracked and<br>non-cracked concrete | v <sup>b</sup>        | [kN]           | 6,9 | 11,4 | 17,1 | 31,4 |              |      |      |
| Displacement                                      | δ <sub>vo</sub>       | [mm]           | 2,0 | 3,2  | 3,6  | 3,5  |              |      |      |
|                                                   | $\delta_{V^\infty}$   | [mm]           | 3,0 | 4,7  | 5,5  | 5,3  | $\checkmark$ |      | /    |
| Stainless steel A4, HCR                           |                       |                |     |      |      |      |              |      |      |
| Shear load in cracked and<br>non-cracked concrete | v <sup>b</sup>        | [kN]           | 7,3 | 11,4 | 17,1 | 31,4 |              |      |      |
| Displacement                                      | $\delta_{V0}$         | [mm]           | 1,9 | 2,4  | 4,0  | 4,3  |              |      |      |
|                                                   | $\delta_{V^{\infty}}$ | [mm]           | 2,9 | 3,6  | 5,9  | 6,4  |              |      |      |

Ter Laare Wedge Anchor DX FAST ETA 1

**Performance** Displacements under shear load



| Anchor size                                                |                            |      | M6                                          | M8   | M10  | M12  |  |
|------------------------------------------------------------|----------------------------|------|---------------------------------------------|------|------|------|--|
| Installation safety factor                                 | $\gamma_2 = \gamma_{inst}$ | [-]  |                                             | 1,   | 2    |      |  |
| Steel failure                                              |                            |      |                                             |      |      |      |  |
| Characteristic tension resistance, steel zinc plated       | N <sub>Rk,s</sub>          | [kN] | 16,1                                        | 22,6 | 26,0 | 56,6 |  |
| Partial safety factor                                      | γ́Ms                       | [-]  |                                             | 1,5  |      |      |  |
| Characteristic tension resistance, stainless steel A4, HCR | N <sub>Rk,s</sub>          | [kN] | 14,1                                        | 25,6 | 35,8 | 59,0 |  |
| Partial safety factor                                      | γ́Ms                       | [-]  | 1,87                                        |      |      |      |  |
| Pull-out failure                                           |                            |      |                                             |      |      |      |  |
| Characteristic resistance in<br>cracked concrete C20/25    | N <sub>Rk,p</sub>          | [kN] | 5                                           | 9    | 12   | 20   |  |
| Increasing factor                                          | ψc                         | [-]  | $\left(\frac{f_{ck,cube}}{25}\right)^{0,5}$ |      |      |      |  |
| Concrete cone failure                                      |                            |      |                                             |      |      |      |  |
| Effective anchorage depth                                  | h <sub>ef</sub>            | [mm] | 45                                          | 58   | 65   | 80   |  |
| Factor according to CEN/TS 1992-4                          | k <sub>cr</sub>            | [-]  | 7,2                                         |      |      |      |  |

# Ter Laare Wedge Anchor DX-I FAST ETA 1

Performance Characteristic values for tension loads, DX-I FAST ETA 1, cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4



| Anchor size                                                                    |                                               |              | M6                                          | M8            | M10             | M12  |  |
|--------------------------------------------------------------------------------|-----------------------------------------------|--------------|---------------------------------------------|---------------|-----------------|------|--|
| Installation safety factor                                                     | γ2 = γinst                                    | [-]          | 1,2                                         |               |                 |      |  |
| Steel failure                                                                  | · ·                                           | I            |                                             |               |                 |      |  |
| Characteristic tension resistance, steel zinc plated                           | N <sub>Rk,s</sub>                             | [kN]         | 16,1                                        | 22,6          | 26,0            | 56,6 |  |
| Partial safety factor                                                          | γ́Ms                                          | [-]          |                                             | 1             | ,5              |      |  |
| Characteristic tension resistance, stainless steel A4, HCR                     | N <sub>Rk,s</sub>                             | [kN]         | 14,1                                        | 25,6          | 35,8            | 59,0 |  |
| Partial safety factor                                                          | γ́Ms                                          | [-]          |                                             | 1,            | 87              |      |  |
| Pull-out                                                                       |                                               |              |                                             | -             |                 | -    |  |
| Characteristic resistance in non-cracked concrete C20/25                       | $N_{Rk,p}$                                    | [kN]         | 12                                          | 16            | 20              | 30   |  |
| <b>Splitting</b> $(N^0_{Rk,c}$ has to be replace                               | ed by N <sup>0</sup> <sub>Rk,sp.</sub> The hi | gher resista | ince of Case 1                              | and Case 2 ma | y be applied.)  |      |  |
| Minimum thickness of concrete member                                           | h <sub>min</sub>                              | [mm]         | 100                                         | 120           | 130             | 160  |  |
| Case 1                                                                         |                                               | г – т        |                                             | 1             |                 |      |  |
| Characteristic resistance in non-cracked concrete C20/25                       | $N^0_{Rk,sp}$                                 | [kN]         | 9                                           | 12            | 16              | 25   |  |
| Spacing (edge distance)                                                        | s <sub>cr,sp</sub> (= 2 c <sub>cr,sp</sub> )  | [mm]         |                                             | 3             | h <sub>ef</sub> |      |  |
| Case 2                                                                         |                                               |              |                                             | •             |                 |      |  |
| Characteristic resistance in non-cracked concrete C20/25                       | N <sup>0</sup> <sub>Rk,sp</sub>               | [kN]         | 12                                          | 16            | 20              | 30   |  |
| Spacing (edge distance)                                                        | s <sub>cr,sp</sub> (= 2 c <sub>cr,sp</sub> )  | [mm]         |                                             | 5             | h <sub>ef</sub> |      |  |
| Increasing factor<br>for N <sub>Rk,p</sub> and N <sup>0</sup> <sub>Rk,sp</sub> | $\psi c$                                      | [-]          | $\left(\frac{f_{ck,cube}}{25}\right)^{0.5}$ |               |                 |      |  |
| Concrete cone failure                                                          |                                               |              |                                             |               |                 |      |  |
| Effective anchorage depth                                                      | h <sub>ef</sub>                               | [mm]         | 45                                          | 58            | 65              | 80   |  |
| Factor according to CEN/TS 1992                                                | -4 k <sub>ucr</sub>                           | [-]          |                                             | 10            | ),1             |      |  |

# Ter Laare Wedge Anchor DX-I FAST ETA 1

#### Performance

Characteristic values for **tension loads**, **DX-I FAST ETA 1**, **non-cracked concrete**, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4



| design method A accordir                                    | ng to $EIA$                    | AG 001 | , Annex C | or CEN/I | S 1992-4 |       |  |
|-------------------------------------------------------------|--------------------------------|--------|-----------|----------|----------|-------|--|
| Anchor size                                                 |                                |        | M6        | M8       | M10      | M12   |  |
| Installation safety factor                                  | γ2 = γinst                     | [-]    |           | 1        | ,0       |       |  |
| DX-I FAST ETA 1, steel zinc plated                          |                                |        |           |          |          |       |  |
| Steel failure without lever arm, Installa                   | tion type \                    | /      |           |          |          |       |  |
| Characteristic shear resistance                             | V <sub>Rk,s</sub>              | [kN]   | 5,8       | 6,9      | 10,4     | 25,8  |  |
| Steel failure without lever arm, Installa                   |                                | )      |           | 1        | 1        |       |  |
| Characteristic shear resistance                             | V <sub>Rk,s</sub>              | [kN]   | 5,1       | 7,6      | 10,8     | 24,3  |  |
| Steel failure with lever arm, Installation                  | n type V                       |        |           |          | •        | •     |  |
| Characteristic bending resistance                           | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]   | 12,2      | 30,0     | 59,8     | 104,6 |  |
| Steel failure with lever arm, Installation                  |                                |        |           |          |          |       |  |
| Characteristic bending resistance                           | M⁰ <sub>Rk,s</sub>             | [Nm]   | 36,0      | 53,2     | 76,0     | 207   |  |
| Partial safety factor for $V_{Rk,s}$ and $M^0_{Rk,s}$       | γ́мs                           | [-]    |           | 1,       | ,25      |       |  |
| Factor of ductility                                         | k <sub>2</sub>                 | [-]    | [-] 1,0   |          |          |       |  |
| DX-I FAST ETA 1, stainless steel A4, H                      | CR                             |        |           |          |          |       |  |
| Steel failure without lever arm, Installa                   | tion type \                    | /      |           |          |          |       |  |
| Characteristic shear resistance                             | $V_{Rk,s}$                     | [kN]   | 5,7       | 9,2      | 10,6     | 23,6  |  |
| Partial safety factor                                       | γ́Ms                           | [-]    |           | 1,       | ,25      |       |  |
| Steel failure without lever arm, Installa                   | tion type I                    | כ      |           |          |          |       |  |
| Characteristic shear resistance                             | $V_{Rk,s}$                     | [kN]   | 7,3       | 7,6      | 9,7      | 29,6  |  |
| Partial safety factor                                       | γ́мs                           | [-]    |           | 1,       | ,25      |       |  |
| Steel failure with lever arm, Installation                  |                                |        |           |          |          |       |  |
| Characteristic bending resistance                           | М <sup>0</sup> <sub>Rk,s</sub> | [Nm]   | 10,7      | 26,2     | 52,3     | 91,6  |  |
| Partial safety factor                                       | γMs                            | [-]    |           | 1,       | ,56      |       |  |
| Steel failure with lever arm, Installation                  |                                |        |           |          |          |       |  |
| Characteristic bending resistance                           | M <sup>0</sup> <sub>Rk,s</sub> | [Nm]   | 28,2      | 44,3     | 69,9     | 191,2 |  |
| Partial safety factor                                       | γ́Ms                           | [-]    |           | 1,       | ,25      |       |  |
| Factor of ductility                                         | k <sub>2</sub>                 | [-]    |           | 1        | ,0       |       |  |
| Concrete pry-out failure                                    |                                |        |           |          |          |       |  |
| Factor k acc. ETAG 001, Annex C or $k_3$ acc. CEN/TS 1992-4 | <b>k</b> <sub>(3)</sub>        | [-]    | 1,5       | 1,5      | 2,0      | 2,0   |  |
| Concrete edge failure                                       |                                |        |           |          |          |       |  |
| Effective length of anchor in shear loading                 | ۱ <sub>f</sub>                 | [mm]   | 45        | 58       | 65       | 80    |  |
| Effective diameter of anchor                                | d <sub>nom</sub>               | [mm]   | 8         | 10       | 12       | 16    |  |

# Ter Laare Wedge Anchor DX-I FAST ETA 1

#### Performance

Characteristic values for shear loads, DX-I FAST ETA 1, cracked and non-cracked concrete, static and quasi-static action, design method A according to ETAG 001, Annex C or CEN/TS 1992-4



| Anchor size                                                                                                                                                                                                                             |             |                                      | M6   | M8  | M10   | M12  |
|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-------------|--------------------------------------|------|-----|-------|------|
| Tension load                                                                                                                                                                                                                            |             |                                      | into |     |       |      |
| Steel failure                                                                                                                                                                                                                           |             |                                      |      |     |       |      |
| Steel zinc plate                                                                                                                                                                                                                        | d           |                                      |      |     |       |      |
|                                                                                                                                                                                                                                         | R30         |                                      | 0,7  | 1,4 | 2,5   | 3,7  |
| Characteristic                                                                                                                                                                                                                          | R60 .       |                                      | 0,6  | 1,2 | 2,0   | 2,9  |
| resistance                                                                                                                                                                                                                              | R90 N       | Rk,s,fi [kN]                         | 0,5  | 0,9 | 1,5   | 2,0  |
| recictance                                                                                                                                                                                                                              | R120        |                                      | 0,4  | 0,8 | 1,3   | 1,8  |
| Stainless steel                                                                                                                                                                                                                         |             |                                      | 0,1  | 0,0 | 1,0   | 1,0  |
|                                                                                                                                                                                                                                         | R30         |                                      | 2,9  | 5,4 | 8,7   | 12,6 |
| Characteristic                                                                                                                                                                                                                          | R60 .       |                                      | 1,9  | 3,8 | 6,3   | 9,2  |
| resistance                                                                                                                                                                                                                              | R90 N       | Rk,s,fi [kN]                         | 1,0  | 2,1 | 3,9   | 5,7  |
|                                                                                                                                                                                                                                         | R120        |                                      | 0,5  | 1,3 | 2,7   | 4,0  |
| Shear load                                                                                                                                                                                                                              |             |                                      | 010  | .,• | _,.   | .,0  |
| Steel zinc plate                                                                                                                                                                                                                        | d<br>R30    |                                      | 0,7  | 1,4 | 2,5   | 3,7  |
| Characteristic                                                                                                                                                                                                                          | R60         |                                      | 0,6  | 1,2 | 2,0   | 2,9  |
| resistance                                                                                                                                                                                                                              | R90 V       | Rk,s,fi <b>[kN]</b>                  | 0,5  | 0,9 | 1,5   | 2,2  |
|                                                                                                                                                                                                                                         | R120        |                                      | 0,4  | 0,8 | 1,3   | 1,8  |
| Stainless steel                                                                                                                                                                                                                         | A4. HCR     | 1                                    |      |     | 1 /   | ,    |
|                                                                                                                                                                                                                                         | R30         |                                      | 2,9  | 5,4 | 8,7   | 12,6 |
| Characteristic                                                                                                                                                                                                                          | R60         | , , , , ,                            | 1,9  | 3,8 | 6,3   | 9,2  |
| Characteristic<br>resistance<br>Shear load<br>Steel failure with<br>Steel zinc plated<br>Characteristic<br>resistance<br>Stainless steel A<br>Characteristic<br>resistance<br>Steel failure with<br>Steel zinc plated<br>Characteristic | R90 V       | Rk,s,fi [kN]                         | 1,0  | 2,1 | 3,9   | 5,7  |
|                                                                                                                                                                                                                                         | R120        |                                      | 0,5  | 1,3 | 2,7   | 4,0  |
| Steel failure wit                                                                                                                                                                                                                       | h lever arm |                                      |      |     |       |      |
| Steel zinc plate                                                                                                                                                                                                                        | d           |                                      |      |     |       |      |
| -                                                                                                                                                                                                                                       | R30         |                                      | 0,5  | 1,4 | 3,3   | 5,7  |
| Characteristic                                                                                                                                                                                                                          | R60         |                                      | 0,4  | 1,2 | 2,6   | 4,6  |
| resistance                                                                                                                                                                                                                              | R90         | <sup>0</sup> <sub>Rk,s,fi</sub> [Nm] | 0,4  | 0,9 | 2,0   | 3,4  |
|                                                                                                                                                                                                                                         | R120        |                                      | 0,3  | 0,8 | 1,6   | 2,8  |
| Stainless steel                                                                                                                                                                                                                         | A4, HCR     |                                      |      |     |       |      |
|                                                                                                                                                                                                                                         | R30         |                                      | 2,2  | 5,5 | 11,2  | 19,6 |
| Characteristic                                                                                                                                                                                                                          | R60 M       | <sup>0</sup> <sub>Rk,s,fi</sub> [Nm] | 1,5  | 3,9 | 8,1   | 14,3 |
| rocictopoo                                                                                                                                                                                                                              | R90         | KK,S,fi                              | 0,7  | 2,2 | 5,1   | 8,9  |
| resistance                                                                                                                                                                                                                              | 1100        |                                      | •,.  | _,_ | - , - | ,    |

The characteristic resistance for pull-out failure, concrete cone failure, concrete pry-out failure and concrete edge failure can be designed according to TR020 / CEN/TS 1992-4.

# Ter Laare Wedge Anchor DX-I FAST ETA 1

#### Performance

Characteristic values for **tension** and **shear loads** under **fire exposure**, **DX-I FAST ETA 1**, cracked and non-cracked concrete C20/25 to C50/60, design acc. to TR 020 or CEN/TS 1992-4, Annex D



| Table C14: Displacements u | nder tension load, | DX-I FAST ETA 1 |
|----------------------------|--------------------|-----------------|
|----------------------------|--------------------|-----------------|

| Anchor size                             |                       |      | M6  | M8  | M10 | M12  |
|-----------------------------------------|-----------------------|------|-----|-----|-----|------|
| Tension load in<br>cracked concrete     | Ν                     | [kN] | 2,0 | 3,6 | 4,8 | 8,0  |
| Displacements                           | δ <sub>N0</sub>       | [mm] | 0,6 | 0,6 | 0,8 | 1,0  |
|                                         | $\delta_{N^{\infty}}$ | [mm] | 0,8 | 0,8 | 1,2 | 1,4  |
| Tension load in<br>non-cracked concrete | Ν                     | [kN] | 4,8 | 6,4 | 8,0 | 12,0 |
| Dia da constru                          | δ <sub>N0</sub>       | [mm] | 0,4 | 0,5 | 0,7 | 0,8  |
| Displacements                           | $\delta_{N^{\infty}}$ | [mm] | 0,8 | 0,8 | 1,2 | 1,4  |

# Table C15: Displacements under shear load, DX-I FAST ETA 1

| Anchor size                                       |                      |      | M6  | M8  | M10 | M12  |
|---------------------------------------------------|----------------------|------|-----|-----|-----|------|
| Shear load in<br>cracked and non-cracked concrete | V                    | [kN] | 4,2 | 5,3 | 6,2 | 16,9 |
|                                                   | $\delta_{V0}$        | [mm] | 2,8 | 2,9 | 2,5 | 3,6  |
| Displacements                                     | $\delta_{V\!\infty}$ | [mm] | 4,2 | 4,4 | 3,8 | 5,3  |

# Ter Laare Wedge Anchor DX-I FAST ETA 1

**Performance** Displacements under tension load and under shear load